Enabling Post-quantum Secure
Software Reconfiguration of
Heterogeneous Resource-Constrained
Networked Devices

Dissertation
zur Erlangung des Grades eines Doktors der Naturwissenschaften

am Fachbereich Mathematik und Informatik der
Freien Universitat Berlin

vorgelegt von

Koen Zandberg

Berlin, 2025

ENABLING POST-QUANTUM SECURE SOFTWARE RECONFIGURATION OF HETEROGENEOUS
RESOURCE-CONSTRAINED NETWORKED DEVICES

Advisor Prof. Dr. Emmanuel Baccelli
Reviewer Prof. Dr. Mesut Glines

1

INTRODUCTION 7

11 SCOPEOF THISWORK v v v v v v e s e e 9
12 RESEARCH QUESTIONS . & v v i i e e e e e e e e e e e e e e e e e e s e e e e e 10
1.3 THESISCONTRIBUTIONS . v v v v v e 10
1.4 PUBLISHED RESULTS . . . v v e e e e e e e e e e e e e e e e e e s s s e e e 12
141 CODE CONTRIBUTIONS . & v v v v v e e e e e e e e e e e e e e e s e e e 14
15 OUTLINE . . vt i e e e e e e e e e e e e e e e e e e e 14
BACKGROUND 15
21 HARDWARE CONSTRAINTS . ot i v v e i e 15
22 NETWORK CONNECTIVITY & v v e 16
221 |EEE 802154 e e e 16
222 LORA . . e e e 17
2.3 FIRMWARE AND OPERATING SYSTEMS . . . v v i v e e e e e e e e e e e e e e e 17
231 RIOT . e e e e e e 18
232 CONTIKI-NG . . o e e e e 18
233 FREERTOS e e e e 18
234 ZEPHYR . o v v e e e e e e e e e e e e e e e e e 19
235 NUTTX . o e e e e e e e e e e e e e e e 19
236 MONGOOSE OS . . v i v e e e e e e e e e e e e 19
237 TOCK . i e e e e e e e e e 19
24 SECURITY PRIMITIVES . .t v o v et e e e e e e e e e e e e e e e e s s e e 19
241 SECURITY ASPECTS & v v i v i e e e e e e e e e e e e e e e e e e e s s e e e 20
242 SYMMETRIC KEY ENCRYPTION . . v v v vt i e e e e e e e e e e e e e e e e e 20
243 PUBLIC KEY CRYPTOGRAPHY . . v v v i i e e e e e e e e e e e e e e e e e 21
244 HASHFUNCTIONS . . o vt i i e 21
25 SOFTWARE UPDATES FOR CONSTRAINED DEVICES . . v v v v v v e e e e et e e e e 22
251 EMBEDDED SOFTWARE DESIGN ON LOW-END [OT DEVICES 22
252 UPDATE FRAMEWORK BACKEND v v v o e e e e e e e e e e e e e e 23
253 NETWORK TRANSPORT TO THE FIRMWARE TOWARDS THE |OT DEVICES 24
254 OPEN STANDARDS FOR SECURE CONSTRAINED FIRMWARE UPDATES 24
2.6 AUTHENTICATION THROUGH DIGITALSIGNATURES .+ v v v v v e e e e e e e e e e e e e 26
261 POST-QUANTUM SIGNATURE SCHEMES .+ v v v v v e v e e e e e e e e e e 27
26.2 PRE-QUANTUMALGORITHMS . . . v i e e e e e e e e e e e e e e e e e e 28
27 EMBEDDED SOFTWARE VIRTUALISATION AND SANDBOXING . . .« v v v v v o v e v . 29
271 SCRIPTENVIRONMENTS . . . v v o i e 29
272 VIRTUALMACHINES . .t v v o e e e e e e e e e e e e e e e e e e e 31

COMPARATIVE EVALUATION OF POST- AND PRE-QUANTUM DIGITAL SIGNATURES FOR CON-

STRAINED DEVICES 34
3.1 IMPACT OF CRYPTOGRAPHIC PRIMITIVES ON FIRMWARE . . . v v v v v o e e e e e e v 34
311 FIRMWARE UPDATE SIZES AND POST-QUANTUM SIGNATURES 35
3.2 CRYPTOGRAPHIC LIBRARY SELECTION . . v v v v v v e e e e e e e e e e e e e e e e e e 36
321 PRE-QUANTUM SIGNATURE SCHEMES v v v v v i e et e e e e et e e e e 36
322 POST-QUANTUM SIGNATURE SCHEMES . . . v v v v v v e e e e e e e e e e e e e 37

323 HASHFUNCTIONS . . o v v e e e e e e e e e e e e e e e e e e e s e 38

ENABLING POST-QUANTUM SECURE SOFTWARE RECONFIGURATION OF HETEROGENEOUS

RESOURCE-CONSTRAINED NETWORKED DEVICES 3
3.3 BENCHMARKS . o o o e e e e e e e e e e e e e 39
331 BENCHMARKHARDWARE SETUP v i i it e e e e e e e e e e e e e e e e e 39

3.32 PRE-QUANTUM SIGNATURE BASELINE v v v v e i e e e e et e e e e e e e 39

3.3.3 POST QUANTUM CRYPTOGRAPHY PRIMITIVES . . . v v v v v v e e e e e e e e e e 40

3.34 HASH FUNCTION BENCHMARKS . . . v v i e e e e e e e e e e e e e e e e e e e 41

3.4 IMPACT OF POST-QUANTUM PRIMITIVES ON EMBEDDED DEVICES . . . « . v v v v v v .. 42
341 THE COST OF POST-QUANTUM SECURITY . . v v v v v i e e e e e e e e e e e e 42

3.4.2 THE COST OF POST-QUANTUM ALGORITHMS WITH FIRMWARE UPDATES 43

3.4.3 REAL-WORLD USABILITY OF POST-QUANTUM DIGITAL SIGNATURES 44

35 DISCUSSION . . o o e e e e e e e e e e 45
351 COMPARISON TO PRE-QUANTUM DIGITAL SIGNATURES . . . v v v v v v v v v e 45

352 IMPACT ON REAL WORLD SCENARIOS . . . v v v vt e i e e e e e e e et e e e 45

3.6 CONCLUSION . . . it e e e e e e e e e e e e e e e e e e s e s e 46
4 SECURE FIRMWARE UPDATE FRAMEWORK FOR LOW-POWER INTERNET OF THINGS 47
41 UPDATEARCHITECTURE © v v v v v e e e e e e e e e e e e e e e e e e e s s s e e 48
411 DEVICE UPDATE NOTIFICATION v v v v v e e e e e e e e e e e e e e e e e 49

412 MANIFESTRETRIEVAL . . o v v o e e e e e e e e e e e e e e e s e e e 49

413 MANIFEST AUTHENTICITY VERIFICATION . . v v v v e e e e e e e e e e e e e 49

41.4 FIRMWARE UPDATE APPLICABILITY CHECKS . v v v v v e e e e e e e e e e e e 49

415 FIRMWARE RETRIEVAL . . v v v v e 49

41.6 FIRMWARE AUTHENTICITY VERIFICATION . . . v v v v e e e e e e e e e e e e 50

417 FIRMWARE INVOCATION . . v v v o e 50

4.2 FIRMWARE REQUIREMENTS . . . v i i it e 50
4.3 MANIFEST DESIGN . . v v o o o e e e e e e e e e e e e e e e e e 51
4.4 IMPLEMENTATION OF SECURE FIRMWARE UPDATES . . . v v v v v v e e e e e e e e e 52
4.41 SCENARIO SETUP v v v v v e e e e e e e e e e e e e e e e e e e s e e 52

4.42 COMPONENTS AND FUNCTIONALOVERVIEW . . v v v v v o e e e e e e e e e 53

4.5 CONFIGURABILITY OF THE PROTOTYPE . . . v v i i i e e e e e e e e e e e e e e e 55
451 BASELINE o e e e e e e e 55

452 BASIC-OTA . . . e e e e 56

453 IPVO-OTA . e e e e e 56
454 SUIT-OTA . . . e e e e e e e e e 56
455 LWM2M-OTA . . e e e e e 57

4.6 PERFORMANCE EVALUATION . . v v v o e 57
4.7 RELATIVE IMPACT OF CRYPTOGRAPHIC LIBRARIES . . v v v v v e e e e e e e e e e 58
4.8 EVALUATING THE COST OF THE OTA UPDATE FUNCTIONALITY v v v v v v v .. 59
481 THECOSTOFOTA . . . o e e e e e e e e 59
4.82 THE COST OF STANDARDS COMPLIANCEFOROTA o v v v v v o 60

4.9 SECURITY ASSESSMENT . v i v v v e e e e e e e e e e e e e e e e e e 61
491 FIRMWARE TAMPERING . . v v v v v e 61
4.92 FIRMWARE REPLAY . . . o i e e e e e e e e e e e e e 62
4.93 OFFLINEDEVICEATTACK . v v v v i e 62
4.9.4 DEVICE FIRMWARE MISMATCH . . v v v v e e e e e e e e e e e e e e e e e 62
4.95 FLASH MEMORY LOCATION MISMATCH . . v v v v v e e e e e e e e e e e e e e 62
496 UNEXPECTED PRECURSORIMAGE . . v v v v v i e e e e e e e e e e e e e e e 63
4.9.7 FIRMWARE REVERSE ENGINEERING v v v v i e e e e e e e e e e e 63
4.9.8 RESOURCE EXHAUSTION . . . v v i e e e e e e e e e e e e e e e e e e e 63

410 DISCUSSION o o o e e e e e e e e e e e e e e e e e 64
4101 MAKING THE FIRMWARE UPDATE RELIABLEISKEY .+ v v v v v v v e e e e e e 64

4.10.2 USE DELEGATION CAPABILITIESWITH CARE .+ .« v v v v e e v e e e e e e e e e e 64

ENABLING POST-QUANTUM SECURE SOFTWARE RECONFIGURATION OF HETEROGENEOUS
RESOURCE-CONSTRAINED NETWORKED DEVICES 4

4.10.3 SHIELDING AGAINST RESOURCE EXHAUSTION AND BEST-BEFORE VULNERABILI-

TIES & v v e e e e e e e e e e e e e e e e e e e 64

4.10.4 REAL-WORLD REQUIREMENTS MAKE FIRMWARE UPDATES COMPLEX 65

4.10.5 10T SOFTWARE UPDATES ARE NOT JUST FOR CRITICAL INFRASTRUCTURE 65

411 CONCLUSION . v v v v e s s s 65

5 RBPF: ATINY SOFTWARE-ONLY VIRTUAL MACHINE FOR INTERNET OF THINGS FIRMWARE 67

51 DESIGN GOALS & REQUIREMENTS . . v v v v v e e e e e e e e e e e e e e e e 638

511 MINIMAL MEMORY FOOTPRINT . . . v v v e e e e e e e e e e e e e e e e e e 68

51.2 NO RELIANCE ON HARDWARE-SPECIFIC MECHANISM FOR MEMORY PROTECTION 68

513 TOLERABLE CODE EXECUTIONSLUMP v v v v i e e e e e e e e e e e e 68

51.4 SMALLAPPLICATION CODESIZE . . v v v v v e e e e e e e e e e e e e e e 68

52 VIRTUAL MACHINE DESIGN . . . o o o o s e e e e e e e e e e e e e e e e e e e 69

521 EXECUTION HOOKS . . . v v i e e e e e e e e e e e e e e e e s e 69

522 ARCHITECTURE . v v v v i e e e e e e e e e e e e e e e e e e e s s e e e e 70

523 MEMORY PROTECTION . . v i v ot e e e e e e e e e e e e e e e e s e 71

5.3 EXPERIMENTAL EVALUATION o ot s e e e e e e e e e e e e e e e e e e 72

531 COMPUTING BENCHMARK SETUP . . v v v v v e e e e e e e e e e e i e e e e 73

532 NETWORKED BENCHMARK SETUP o v i i e e e e e e e e e e e e e e 73

53.3 VIRTUAL MACHINE MEMORY REQUIREMENT . . v v v v v v e v e e e e e e oo 73

5.3.4 APPLICATION SIZE COMPARISON . . . v v v v e e e e e e e e e e e e e e e e e 74

53.5 RBPFWITH LOGIC INVOLVING [OT NETWORKING . . v v v v v v o e e e e e e e 74

5.3.6 APPLICATION FLASH REQUIREMENT . . v v v v v o e e e e e e e e e e e 75

537 RUNTIME MEMORY REQUIREMENT . & v v v v v v e e e e e e e e e e e e e e e 75

5.4 DISCUSSION . o i e e e e e e e e e e e e e e e 75

541 INHERENT LIMITATIONS WITHAVM o e e 75

54.2 DECREASING WASM RAM USAGE .+ v v v v v e e e e e e e e e e e e i e e 76

543 IMPROVING RBPF EXECUTION TIME OVERHEAD . . v v v v v v v v e e e e e e v 76

5.4.4 DECREASING RBPF SCRIPT SIZE OVERHEAD . . v v v v v i e e e e e e e e e e 76

5.4.5 EXTENDING RBPF SANDBOXING GUARANTEES . . . v v v v v v vt e e e e e e 77

55 CONCLUSION . . v vt o e e e e e e e e e e e e e e e e e e s e e 77
6 SANDBOXED FUNCTION EXECUTION FOR DEVOPS-STYLE RECONFIGURATION OF CONSTRAINED

DEVICES 78

61 THREATMODEL . & v v v v i e 78

611 MALICIOUS TENANT & & o o e 79

6.1.2 MALICIOUS CLIENT v v v vt i e 79

B.1.3 ATTACKVECTORS . v v v v e e e e e e e e e e e e e e e e s e s e 79

6.2 EMBEDDED RUNTIME ARCHITECTURE DESIGN i i e e e e e e e e e 80

621 USEOFANRTOS WITH MULTI-THREADING . . v v v v v e e e e e e e e e e e e e 80

6.22 NO ASSUMPTIONS ON MICROCONTROLLER HARDWARE v v o ... 80

6.23 USE OF ULTRA-LIGHTWEIGHT VIRTUALISATION . '+ v v v v v v v e e e e e e o 80

6.24 USE OF SIMPLE CONTAINERIZATION . . . v v v v e e e e e e e e e e e e e e e 81

6.25 ISOLATION & SANDBOXING THROUGH VIRTUALISATION v v v v v v v v 81

6.26 EVENT-BASED LAUNCHPAD EXECUTIONMODEL v v v v v v v v 81

6.27 LOW-POWER SECURE RUNTIME UPDATE PRIMITIVES 81

6.3 ULTRA-LIGHTWEIGHT VM MICRO-BENCHMARK o i e i 82

6.31 CONSIDERING SIZE . . v v o i e 82

6.32 CONSIDERING SPEED . & v v v v vt e et e e e e e e e e e e e e e e 83

6.3.3 CONSIDERING VM ARCHITECTURE & SECURITY . . v v v v v e e e e e e e e e e e 84

6.3.4 CHOICE OF VIRTUALISATION '+ v v v v e e e e e e e e e e e e e e e e s e e 84

6.4 FEMTO-CONTAINER RUNTIME IMPLEMENTATION . v v v v v v e e e e e e e e e e e e 84

ENABLING POST-QUANTUM SECURE SOFTWARE RECONFIGURATION OF HETEROGENEOUS
RESOURCE-CONSTRAINED NETWORKED DEVICES

6.41 USEOFRIOT MULTI-THREADING .« v v v v v e e e e e e e e e e e e e e e
6.4.2 ULTRA-LIGHTWEIGHT VIRTUALISATION USING EBPF INSTRUCTION SET
6.4.3 ISOLATION & SANDBOXING . v v v v v v et e e e e e e e e e e e e e e e e e e
6.44 HOOKS & EVENT-BASED EXECUTION v i ittt it e i e e
6.5 USE-CASE PROTOTYPING WITH FEMTO-CONTAINERS + v v v v v v v e e v e e e e e
6.51 PROGRAMMING MODEL . . . v v v v e
6.52 KERNELDEBUG CODEEXAMPLE v i v v i e e e e e e e e e e e e e
6.53 NETWORKED SENSOR CODE EXAMPLE v v i i i i e e e e e e e
6.6 FORMALVERIFICATION . . & v v o i e
6.6.1 TARGETED REQUIREMENTS FORMALIZATION. . . . v v v v v vt i i e e e e e e o
6.6.2 FORMAL VERIFICATION APPROACH. & v v v v v v e e e e e e e e e e e e e e
6.7 PERFORMANCE EVALUATION . . v v i v e o e e e e e e e e e e e e e e e e e e e
6.8 HOSTING ENGINE ANALYSIS . & v v v o e
6.9 EXPERIMENTS WITH A SINGLE CONTAINER .+ v v v v v e e e e e e e e e e e e e e
6.1 FEMTO-CONTAINERS WITH MULTIPLE INSTANCES v v v v v v e e e e
6.10 OVERHEAD ADDED BY HOOKS i i e e e e e e e e e e e e e e e e e
011 DISCUSSION . . . it e
6.11.1 VIRTUALISATION VS POWER-EFFICIENCY i i i e
6.11.2 CONTROLLING TENANTPRIVILEGES . . .« v v v e i e e e e e e e e e e e e e
6.11.3 INSTALLTIME VS EXECUTIONTIME . . v v v v v e e e e e e e e e e e e e e e
6.11.4 TENANT-LOCAL STORAGE OF VALUES v v v i e i e e e e e e e e e e
6.11.5 SECURITY VS LONG-RUNNING APPLICATION SUPPORT . v . v v v v v v v v e e
6.11.6 FIXED- VS VARIABLE-LENGTH INSTRUCTIONS v v v v e e e e e e e e o
B0.12 CONCLUSION . . it o e s e e s e e e

7 CASE STUDY: SECURE SOFTWARE RECONFIGURATION ON NANOSATELLITE
71 THINGSAT .« v o o e e e e e e e e e e e e
711 SYSTEMARCHITECTURE DESIGN v o v s e s e e e e e e e e e e e e e e
712 COMMUNICATION CHARACTERISTICS OVERVIEW . « + v v v v e e e e e e e e e e
713 INTERMITTENT COMMUNICATION AND POWER SUPPLY v v v v v v o
71.4 HOSTED PAYLOAD UPDATE REQUIREMENTS . . & v v v v e e e e e e e e e e e e e
7.2 SOFTWARE UPDATE IMPLEMENTATION . . o v v v e e e e e e e e e e e e e e e e
721 SECURITY REQUIREMENTS . . . v i i i e
722 TRUSTANCHOR . . vt it i e
72.3 CUBEDATE SOFTWARE LIFE-CYCLE PHASES i v i i i i e e e
724 SUPPORTING NETWORK TRANSPORT HETEROGENEITY . . v v v v v v v v v v
72,5 SUPPORTING UPDATED SOFTWARE HETEROGENEITY . .+ v v v v v v v v v v v
726 LOW-POWER END-TO-END SECURITYUSINGSUIT
7.3 PERFORMANCE EVALUATION . o v v vt e
731 MEMORY FOOTPRINT OVERHEAD & v v v v v v e e e e e e e e e e e e e e e
732 NETWORK TRANSFER OVERHEAD . + v v v v v e e e e e e e e e e e e e e e
74 DISCUSSION . . . i e e e e e e e e e e
741 PORTABILITY . o o e
7.4.2 NETWORK STACK SIMPLIFICATION & STANDARDIZATION v v v v ..
7.4.3 ALTERNATIVE CRYPTOGRAPHIC PRIMITIVES v v v v e e e e e e e e e e a
75 CONCLUSION . . it e s e e e

8 CONCLUSION
81 SUMMARY v o ot e e e e e e e s
8.2 PERSPECTIVES '+ v v v v v e e e e e e e e e e e e e e e e

A BIBLIOGRAPHY

112
112
114

116

ENABLING POST-QUANTUM SECURE SOFTWARE RECONFIGURATION OF HETEROGENEOUS

RESOURCE-CONSTRAINED NETWORKED DEVICES 6
B LisT OF ACRONYMS 126
C CURRICULUM VITAE 128

D DEUTSCHE ZUSAMMENFASSUNG 130

CHAPTER 1

INTRODUCTION

The number of small constrained embedded devices deployed around
in our personal environment keeps growing. Gartner [74] estimates a
8.4 billion internet connected devices in use in 2017. This growth
continued with over 18.8 billion devices connected in 2024[95]. In
contrast to general purpose computer systems such as desktops,
laptops and servers, this class of devices can be significantly more
constrained in resources such as in an industrial control system or
in a vehicle [115, Definition 1.1]. These embedded devices serve a
specific tailored purpose in the system they are embedded in, often a
cyber-physical purpose where physical systems are operated by the
embedded device. Software bugs and vulnerabilities can influence
physical operations and might be able to cause physical harm when
triggered or exploited. The cyber-physical nature of these devices can
make these embedded devices an attractive target for attackers, where
the constrained nature makes it harder to defend against attackers and
the physical aspect can cause direct harm. For these reasons it is
paramount to either prevent security vulnerabilities, or when bugs
are discovered, have a mechanism in place to patch the bugin the
software. Without the ability to resolve security issues in the field, it is
only a matter of time until the device becomes a security liability.

With the emergence of the Internet of Things (IoT) [97], embedded
systems are more connected than ever. These devices gather data
measurements about their surrounding environment, process informa-
tion and control physical systems. In addition, these devices often
transmit their measurements to centralized server-based systems. The
interconnected nature of these devices increases the attack surface of
these devices and makes them an attractive target for malicious actors.
With the internet connectivity of loT devices, it must be assumed
attackers are able to directly communicate with the devices. Relying on
an unconstrained gateway device to guard access to the constrained
devices is no longer sufficient. These constrained devices must thus be
sufficiently secure to prevent damage caused by such malicious actors.

The added internet connectivity, provided by state-of-the-art network
architectures, increases the software complexity on IoT devices. The
network stack must be able to both transmit the measurement data to
centralized systems over the internet, as well as receive instructions
and configuration from these centralized systems. As such the handling
routines for these devices must be able to handle arbitrary input

ENABLING POST-QUANTUM SECURE SOFTWARE RECONFIGURATION OF HETEROGENEOUS
RESOURCE-CONSTRAINED NETWORKED DEVICES CHAPTER 1. INTRODUCTION 8

received via the network connection. Given the complexity of network
protocols used in the constrained embedded space, these network
handler routines are susceptible to vulnerabilities [142]. The issue is
exacerbated by the lack of common software isolation mechanisms
present on general purpose computers, as the hardware features to
mitigate or isolate common vulnerabilities are not present on the
constrained devices [169].

A large fraction of loT devices are based on microcontrollers, highly
integrated devices and optimized for power consumption, production
cost or chip size. Conventional approaches to security used with general
purpose operating systems, such as relying on security features of the
hardware platform, are not available on these systems. The modular
multi-processing approach used by conventional operating systems, by
splitting software components into multiple isolated processes, relies
on functionality provided by platform hardware such as an memory
management unit (MMU) not available on microcontrollers. Instead,
only a few kilobytes of memory are available for the operating system.
Additional hardware features for protection are fully optional and often
unavailable. Thus the impact of vulnerabilities in the software can be
used to gain full access to the system. Therefor, protecting the software
must fit within the limited memory and processing power available,
and cannot assume the presence of hardware security features.

The ability to isolate processes and run multiple different software
components from different stakeholders, a solved issue on general
purpose computers through virtualisation and containerization, is a
challenging subject area in constrained devices. Here again the lack of
hardware security and virtualisation features available on general
purpose computers, hampers the deployment of similar solutions in
the constrained loT space. While isolating sensitive data processing
from the attack surface provided by network handlers can curb entire
classes of vulnerabilities, deploying such isolation mechanisms is not
trivial on constrained devices [174].

However, the ability to resolve vulnerabilities in a device is not the
only use-case for over-the-air updates. Without updates, the fea-
tures provided by a device are fixed at deployment time. Adding
new functionality and enhancing existing features of a device allows
deployments to be more flexible in their purpose, and allows stake-
holders to adapt existing devices to new developments. The scope of
these adaptations can range from simple configuration updates to
adjustments of single software components to the deployment of a
completely new operating system on the devices. This flexibility can
extend the deployment lifetime of the device and allow for adjusting to
new and unexpected developments during the device lifetime.

With the complexity of current software, the discovery of new bugs is
just a matter of time. While techniques exist to discover and mitigate
bugs before software is deployed in production systems, the ability
to resolve bugs while the device is already deployed in the field is
a mandatory feature. The European Union mandates the ability
to update software running on devices for the full life cycle of the
device [68]. Given the constrained nature of the loT devices in the field,

11

approaches to software updates used with general purpose operating
systems are not always possible. Instead a novel, holistic approach
suitable for constrained devices is required. This approach must allow
for updating software components on the device without requiring
personnel to physically manipulate the device. Devices can be deeply
embedded in existing structures, or simply unreachable without
significant effort. For example with satellite-based systems [111],
while still a significant target for cyberattacks, are not accessible by
conventional means when an issue arises.

Furthermore, the isolation of software components within the operating
system, without any reliance on the optional security hardware
available, can significantly enhance the flexibility and security of the
constrained system. While the lack of resources in these constrained
devices must be taken into account here and poses a challenge, the
isolation of software modules provides both security benefits and
allows for modularization of the software components during updates.

The advent of quantum computers further complicate the matter for
the state-of-the-art solutions. Conventional cryptographic algorithms
used to secure network communication, have limited time remaining
before they can no longer be considered secure. While research on
post-quantum cryptographic algorithms is on-going, current devices
require a level of crypto-agility, being able to adapt to changes in the
cryptographic stack and switch algorithms when novel algorithms are
developed. Furthermore, conventional (pre-quantum) cryptographic
algorithms benefit from the availability of implementations optimized
for constrained embedded systems. Given the novel nature of currently
available post-quantum cryptographic algorithms, these have not yet
had the multiple development cycles available to older algorithms. For
the constrained embedded devices, algorithms and implementations
must be made available and suitable for the limited resources available
on these platforms.

1.1 SCOPE OF THIS WORK

When considering embedded systems in general, the full scope can
range any computational device integrated into a larger system. Within
these systems embedded processors have a well-defined design
purpose. The processing power and memory available to these systems
can range from a few kilobytes to multiple gigabytes of memory,
running a monolithic software stack or a full blown general purpose
operating system tailored to the application of the system.

However, in this work the focus is on the constrained embedded
systems, restricted to class 0 and 1 type of devices [41]. These systems
are severely limited in computational power and memory. For these

devices, the processor is often running between 10 MHz to 500 MHz.

Memory on these devices is 64 kB to 1024 kB of flash and 10 KiB to
100 KiB of RAM.

This type of devices is unable to provide the hardware functionality
required to run Linux or other general purpose operating system.

CHAPTER 1. INTRODUCTION 9

13

Instead these device run a single monolithic software system called
firmware.

Similar to the processing power and memory, the network links avail-
able to the devices considered is also constrained. Network throughput
is limited to 10 kbps to 1024 kbps and potentially asymmetric in nature.
The network links provided on these devices can have widely different
upload and download throughputs.

Auxiliary security hardware components are assumed to be absent
from the platforms considered. Some microcontrollers contain extra
peripherals aimed at security. The memory protection unit (MPU) or
Physical Memory Protection (PMP) provides granular permissions for
memory access and allows segmenting different software modules.

While solutions can be designed to rely on these components, a consid-
erable number of devices do not have access to these components but
still require robust security and update solutions.

1.2 RESEARCH QUESTIONS

The main research question of this work is:

How can we enable post-quantum secure software reconfiguration
of heterogeneous resource-constrained network devices using open
solutions?

This research question can be divided into multiple sub questions.

RQ1 Which post-quantum primitives are suitable in practice on
resource-constrained microcontroller-based devices?

RQ2 How can resource-constrained device secure software updates
be generalized and democratized?

RQ3 How can individual software components be isolated and
executed securely (sandboxed) on resource-constrained devices,
with or without auxiliary hardware security components?

RQ4 How can a multi-tenant (sandboxed) environment be supported
on a resource-constrained device, analogous to a cloud paradigm
e.g. aclFaasS.

1.3 THESIS CONTRIBUTIONS

In this thesis, | present my work on secure software reconfiguration on
small embedded systems in a post-quantum, low-throughput network
scenario.

In the space of post-quantum security | evaluate a number of sig-
nature schemes on small microcontrollers. This work is published
in “Quantum-Resistant Software Update Security on Low-Power
Networked Embedded Devices” [4] whereby | survey post-quantum
signature schemes suitable for embedded systems. | compare the
selected cryptographic signature schemes experimentally on a number

CHAPTER 1. INTRODUCTION

10

13

CHAPTER 1, INTRODUCTION

11

“Quantum-Resistant Software Update Security on Low-Power Net-
worked Embedded Devices”[4]

“Secure Firmware Updates for Constrained loT Devices Using Open
Standards: A Reality Check”[3]

A Concise Binary Object Representation (CBOR)-based Serialization
Format for the Software Updates for Internet of Things (SUIT) Manifest[7]

“Minimal Virtual Machines on loT Microcontrollers: The Case of Berkeley
Packet Filters with rBPF”[1]

“End-to-End Mechanized Proof of an eBPF Virtual Machine for Microcon-
trollers”[8]

“Femto-containers: lightweight virtualization and faultisolation for
small software functions on low-power IoT microcontrollers”([2]

“Cubedate: Securing Software Updates in Orbit for Low-Power Payloads
Hosted on CubeSats”[6]

chapter 3

Digital Signatures

chapter 4

Secure Software Updates

chapter 5

Lightweight Virtualization

chapter 6

Sandboxed Functions

chapter 7

Case Study: Nano Satellite

Figure 1.1: Contributions of this thesis in relation to the academic output

of microcontrollers against the main pre-quantum signature schemes.

I show that while post-quantum-security is indeed doable on these
devices, large differences exist between the different cryptographic
primitives, theirimplementation, and the burden they put on the
device.

To achieve secure firmware updates on small embedded systems, |
contribute to the design and standardization of a secure metadata
format for payloads. This work has been published in A Concise
Binary Object Representation (CBOR)-based Serialization Format for
the Software Updates for Internet of Things (SUIT) Manifest[7] which
specifies the SUIT standard to which I contribute. Furthermore,
| present the first results of experiments using SUIT for firmware
updates on a common loT operating system, for both pre-quantum
and post-quantum security levels [3, 4]. | published an open source
implementation of SUIT able to deliver arbitrary firmware updates for
the RIOT operating system. | show that firmware updates secured
with SUIT can be achieved on a large variety of devices, including the
smallest of microcontrollers.

In the domain of small virtual machines for microcontrollers: | design
rBPF, a small software-only virtual machine optimized for small
virtualised applications on embedded systems. | present the design

14

and implementation of rBPF as lightweight modular sandbox in RIOT. |
compare WebAssembly and rBPF on embedded systems and show the
minimal impact rBPF has on the total firmware size. | evaluate the
capabilities of rBPF for running small business logic applications. |
show that rBPF can be deployed with minimal impact on the firmware
size. This work has been published before as [1].

Aiming to provide an environment for executing functions: | build
Femto-Container on top of rBPF as a Functions-as-a-Service (FaaS)-like
runtime for debugging and enhancing firmware on small embedded sys-
tems. This work has been published as “Femto-containers: lightweight
virtualization and fault isolation for small software functions on
low-power loT microcontrollers” [2] whereby | comparatively evaluate
Femto-Container against rBPF and WebAssembly. The implementation
of Femto-Containers is so small that, in collaboration with formal
verification specialists, we provide an implementation of the hosting
engine providing formal guarantees on memory- and fault-isolation.
| thus demonstrate how Femto-Container provides an attractive
alternative as hosting engine for multi-tenant functions on embedded
systems.

Finally, aiming to verify the design of update components, | provide a
case-study: ThingSat, a low-power, low-cost payload hosted on a
nano-satellite (CubeSat) launched in Low-Earth Orbit (LEO) in 2023. In
this context | survey open standard protocols for secure over-the-air
software (re-)configuration on ThingSat. | then define Cubedate, a
generic architecture combining several protocols, SUIT and the work |
present in this thesis to enable various levels of software updates for
ThingSat. | evaluate an open source implementation of Cubedate [6].

1.4 PUBLISHED RESULTS

The outlined research results have led to publications of the research
results in the form of peer-reviewed papers and an open specification
under active review. The following work has been published in scope
of this thesis:

[1] Koen Zandberg and Emmanuel Baccelli. “Minimal Virtual
Machines on IoT Microcontrollers: The Case of Berkeley Packet
Filters with rBPF”. In: 9th IFIP International Conference on
Performance Evaluation and Modeling in Wireless Networks,
PEMWN 2020, Berlin, Germany, December 1-3, 2020. |EEE, 2020,
pp. 1-6. DOI: 10 . 23919 / PEMWN50727 . 2020 . 9293081.

URL: https://doi.org/10.23919/PEMWN50727.2020.

9293081.

[2] Koen Zandberg, Emmanuel Baccelli, Shenghao Yuan, Frédéric
Besson, and Jean-Pierre Talpin. “Femto-containers: lightweight
virtualization and fault isolation for small software functions
on low-power loT microcontrollers” In: Middleware *22: 23rd
International Middleware Conference, Quebec, QC, Canada,
November 7 - 11, 2022. Ed. by Paolo Bellavista, Kaiwen Zhang,
Abdelouahed Gherbi, Saurabh Bagchi, Marta Patifio, Giuseppe
Di Modica, and Julien Gascon-Samson. ACM, 2022, pp. 161-173.

CHAPTER 1. INTRODUCTION

12

141

(3]

(4]

(8]

DOI: 10.1145/3528535.3565242. URL: https://doi.
org/10.1145/3528535.3565242.

Koen Zandberg, Kaspar Schleiser, Francisco Acosta Padilla,
Hannes Tschofenig, and Emmanuel Baccelli. “Secure Firmware
Updates for Constrained loT Devices Using Open Standards: A
Reality Check”. In: IEEE Access 7 (2019), pp. 71907-71920. pol:
10.1109/ACCESS.2019.2919760. URL: https://doi.
org/10.1109/ACCESS.2019.2919760

Gustavo Banegas, Koen Zandberg, Emmanuel Baccelli, Adrian
Herrmann, and Benjamin Smith. “Quantum-Resistant Software
Update Security on Low-Power Networked Embedded Devices”.
In: Applied Cryptography and Network Security - 20th Interna-
tional Conference, ACNS 2022, Rome, Italy, June 20-23, 2022,
Proceedings. Ed. by Giuseppe Ateniese and Daniele Venturi.
Vol. 13269. Lecture Notes in Computer Science. Springer, 2022,
pp. 872-891. DOI: 10. 1007 /978-3-031-09234-3_43.
URL: https://doi.org/10.1007/978-3-031-09234~-
3_43.

Zhaolan Huang, Koen Zandberg, Kaspar Schleiser, and Em-
manuel Baccelli. “RIOT-ML: toolkit for over-the-air secure
updates and performance evaluation of TinyML models”. In:
Annals of Telecommunications (2024), pp. 1-15.
Francois-Xavier Molina, Emmanuel Baccelli, Koen Zandberg,
Didier Donsez, and Olivier Alphand. “Cubedate: Securing
Software Updates in Orbit for Low-Power Payloads Hosted
on CubeSats”. In: 12th IFIP/IEEE International Conference on
Performance Evaluation and Modeling in Wired and Wireless
Networks, PEMWN 2023, Berlin, Germany, September 27-29,
2023. IEEE, 2023, pp. 1-6. DOI: 10 . 23919 / PEMWN58813 .
2023.10304910. URL: https://doi.org/10.23919/
PEMWN58813.2023.10304910

Brendan Moran, Hannes Tschofenig, Henk Birkholz, Koen
Zandberg, and @yvind Rgnningstad. A Concise Binary Object
Representation (CBOR)-based Serialization Format for the
Software Updates for Internet of Things (SUIT) Manifest. Internet-
Draft draft-ietf-suit-manifest-25. Work in Progress. Internet
Engineering Task Force, Feb. 2024. 101 pp. URL: https://
datatracker .dietf.org/doc/draft-dietf-suit-
manifest/25/.

Shenghao Yuan, Frédéric Besson, Jean-Pierre Talpin, Samuel
Hym, Koen Zandberg, and Emmanuel Baccelli. “End-to-End
Mechanized Proof of an eBPF Virtual Machine for Microcon-
trollers”. In: Computer Aided Verification - 34th International
Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceed-
ings, Part Il. Ed. by Sharon Shoham and Yakir Vizel. Vol. 13372.
Lecture Notes in Computer Science. Springer, 2022, pp. 293-316.
DOI: 10.1007/978-3-031-13188-2_15. URL: https:
//doi.org/10.1007/978-3-031-13188-2_15.

CHAPTER 1, INTRODUCTION

13

15

1.4.1 CODECONTRIBUTIONS

In addition to academic papers, contributions have been made to the
operating system RIOT [30] to incorporate the results from the research
into public code. Most notably the inclusion of SUIT firmware update
capabilities [9, 13] in RIOT as default over-the-air firmware update
mechanism.

[9] Schleiser, Kaspar and Zandberg, Koen and Abadie, Alexadre
and Molina, Francgois-Xavier. sys/suit: initial support for SUIT
firmware updates. 2019. URL: https://github.com/RIOT-
0S/RIOT/pull/11818.

[10] Zandberg, Koen. libcose: Constrained node COSE library. 2022.
URL: https://github.com/bergzand/libcose.

[11] Zandberg, Koen. NanoCBOR: CBOR library aimed at heavily
constrained devices. 2024. URL: https: //github.com/
bergzand/NanoCBOR.

[12] Zandberg, Koen. rBPF: Initial include of small virtual machine.
2021. URL: https: / /github.com/RIOT-0S/RIOT/
pull/19372.

[13] Zandberg, Koen. SUIT: Introduction of a payload storage API for
SUIT manifest payloads. 2020. URL: https://github.com/
RIOT-0S/RIOT/pull/15110.

[14] Zandberg, Koen and Baccelli, Emmanuel. Femto-Containers:
Femto-Containers RIOT Implementation & Hands-on Tutorials.
2022. URL: https://github.com/future-proof-iot/
Femto-Container_tutorials.

During the span of this work | maintained and contributed more
than 900 code commits to open source software projects, including
RIOT [30], libcose [10] and NanoCBOR [11].

1.5 OUTLINE

This thesis starts with a chapter providing background and related
work on the fundamental building blocks at play, including a primary
on cryptography, low-power hardware and software, low-power
networking, virtualisation and sandboxing (chapter 2). In the following
chapters, the contributions of this thesis are developed. Post-Quantum
digital signatures are evaluated and compared against pre-quantum
digital signatures in chapter 3. Next the over the air update mechanism
leveraging SUIT manifests are presented in chapter 4. Following is
chapter 5 describing the rBPF virtual machine (VM). The design of
rBPF is explained and measurements to show the runtime overhead
and impact of adding the rBPF to a typical firmware are presented. In
chapter 6, Femto-Container is presented as extension on top of rBPF,
Finally a case-study using the Cubedate satellite firmware management
system is presented in chapter 7.

CHAPTER 1. INTRODUCTION

14

CHAPTER 2

BACKGROUND

The embedded devices connected to the internet, know as the IoT, are

growing and tend towards instrumenting all aspects of our environment.

To this end, billions of new devices are gradually being deployed on the
one hand, and on the other hand, retro-fitting supplements legacy
devices with similar capabilities for communication and on-board
computation. Managing the firmware and other software components
on these devices requires a coherent system addressing multiple
challenges:

+ Secure authentication of messages through digital signatures.

+ Flexible update mechanisms for firmware.

« Secure execution of potentially untrusted code on constrained
devices.

+ Integration of sandbox environments into the operating system.

For each of these challenges, there exist previous work to address the
challenges. This chapter presents background information on the
scope of this work and presents a number of existing solutions to the
challenges involved. First the constraints presented by the hardware
involved and the hardware and software capabilities are presented. As
one of the requirements with firmware management heavily involves
security, a quick security primer with relevant security primitives is
given. Following this security primer, firmware updates themselves are

discussed with different existing solutions and challenges involved.

Given the need for digital signatures with firmware updates, a number
of relevant existing post-quantum and pre-quantum digital signatures
are presented. At last virtualisation and sandboxing environments are
presented, with a deeper focus on WebAssembly and eBPF given their
relevance to this work.

2.1 HARDWARE CONSTRAINTS

The type of devices deployed here are constrained in processing
resources. Microcontrollers deployed with a cyber-physical purpose

can be classified [41] based on the resources available on the device.

The resources of these devices ranges between 10 kB to 250 kB in ROM
with RAM between 1 kB to 50 kB. While it is expected that the resource
boundaries of constrained devices move over time, gains available

15

221

with personal (desktop) computer hardware will not directly translate
to the embedded space. Increases in computational power will more
likely be invested in power requirement reductions and not necessarily
in increased computer power.

Devices in the constrained cyber-physical systems space use small
processor cores. Popular examples of these are the ARM Cortex-M
class processor cores [24], RISC-V processors [94] with limited feature
set, and the Cadence Xtensa processor cores [53]. RISC-V cores in
particular are extremely configurable and, depending on the hardware
implementation, can be configured for everything between large
hardware platforms and small low-power devices. In the scope of this
work the RISC-V-based microcontrollers are limited in capabilities and
consist of a basic RV32I core with limited extensions.

This class of devices is not only constrained in raw processing power,
available peripherals is also limited. Memory protection mechanisms
ubiquitous in personal computers, the MMU, are not available, or only
available with very limited capabilities.

2.2 NETWORKCONNECTIVITY

The devices considered here have network connectivity to interact
with other devices. When considering network connectivity, similar
constraints apply as with the processing power on the devices. High-
throughput network connectivity requires power and is often not
required for the functionality of the device. The types of devices
considered in this work often connect via low power networking
alternatives such as IEEE 802.15.4 [91] or LoRA-based [112] networks.
Each of these network connections bring their own advantages and
restrictions, which will be elaborated on below.

2.2.1 IEEE802.15.4

IEEE 802.15.4 network links are optimized for bidirectional communica-
tion with low power in mind. In contrast to WiFi, frame sizes are limited
to 127 B, and theoretical throughput limited to 250 kbps. Furthermore,
IEEE 802.15.4 provides mechanisms to create mesh networks. On
top of IEEE 802.15.4, different protocols can be used to provide rich
network connectivity. One of the options is Zigbee [19], a full mesh
network protocol for high-level communication with the aim to create
personal area networks for devices such as small low-power home
automation devices. Another option is 6LoWPAN [122], which defines a
frame format for the transmission of IPv6 packets over IEEE 802.15.4
networks. Via 6LoWPAN, devices can be connected transparently
to the rest of the internet via a so called border router. While the
restriction of 127 B frame size still applies, further header compression
and protocols optimized for constrained networks further lessen the
burden on the network and devices.

One of the protocols used in this space is Constrained Application
Protocol (CoAP) [147], a specialized web transfer protocol optimized for
constrained devices and networks. CoAP is specifically optimized for

CHAPTER 2 BACKGROUND 16

2.3

machine- to-machine applications such as home automation devices
and supports networks limited in throughput. Another mechanism in
CoAP provides discovery of application endpoints. A large number of
extensions are available for CoAP to further enhance the capabilities:

« An observe mechanism [86] that allows clients to monitor an
endpoint on a server for changes in a lightweight manner.

+ Block-wise transfers [45] to support transfer sizes efficiently
beyond the frame size limitations of the link layer.

+ Patch and fetch methods [157] to support partial access to
resources on a server.

+ Object security [145] to protect resources provided via end-to-end
encryption.

+ Echo option [21] to mitigate security issues and force clients to
demonstrate reachability at its claimed network address.

+ Resource directories [22] for COAP to publish available resources
to a central resource directory.

Both 6LoWPAN and CoAP are developed as open standards freely
available by the Internet Engineering Task Force (IETF).

2.2.2 LORA

The LoRa specification, together with the LoRaWAN MAC layer provide a
low-power and long-range communication standard. Communication

ranges of more than 10 km are possible with data rates up to 50 kbps.

LoRaWAN frames are received by multiple gateways, which forward
the frames to a centralized network server. The network server then
forwards the frame to an application server provisioned by the device
owner. The network itself is reliable for moderate loads, but can show
performance issues with sending acknowledgements [32].

OTHER NETWORK CONNECTIVITY STANDARDS

Other network connectivity standards are: Bluetooth Low Energy [171],
Narrowband loT [144] and Sigfox [105,], among others. A select
number of microcontrollers also have a WiFi network peripheral on
board, with the extra power consumption associated [172] when not
carefully tuned for efficiency.

2.3 FIRMWARE AND OPERATING
SYSTEMS

Given the constrained nature and the limited space available in the flash
of the devices, specialized operating systems have been developed for
these devices. The nature of these devices put severe restrictions
on the firmware running on them [57]. Paradigms ubiquitous to
commodity desktop and server hardware are not always applicable to
the constrained devices. Traditional operating systems such as Linux or

CHAPTER 2. BACKGROUND 17

233 CHAPTER 2: BACKGROUND 18

BSD are not applicable to microcontrollers as they cannot run on the
constrained capabilities provided by the microcontrollers.

The purpose operating systems specialized for microcontrollers is to
manage the limited resources on these devices in a power-efficient
way [83, 153]. Usually such operating systems provide a simple task
scheduler, providing a notion of parallelization of different task on the
system. Furthermore, access to the different hardware peripherals
available on microcontrollers is usually provided through abstractions
provided by the operating system.

Depending on the operating system a more extensive feature set is
available. A network stack, tailored for constrained devices can be
shipped with the operating system, providing connectivity out of the
box. Drivers for different peripherals such as common sensors and
actuators can be integrated into the operating system. Furthermore,
rich services such as over-the-air update capabilities and high level
language scripting support is also within reach for some operating
systems. Depending on the enabled features within the firmware, the
required ROM and RAM by the firmware can increase significantly,
potentially exceeding what is provided by the small class 0 type of
devices.

Multiple operating systems exist in active use on microcontrollers, each
with their own goals and feature sets:

2.3.1 RIOT

RIOT [30] was developed with the requirements for constrained
embedded and networked devices in mind. It aims to provide a
developer-friendly programming model and API, providing a microker-
nel with multi-threading and a full 6LOWPAN network stack. RIOT
is written in C, with support for C++ for libraries. RIOT has a strong
modular approach to firmware and can be compiled in many different
configurations. A number of configurations with their ROM and RAM

usage are shown in Table 2.1
Table 2.1: RIOT RAM and ROM usage for
various RIOT configurations on a 32 bit

2.3.2 CONTIKI-NG Cortex-M0+ microcontroller [30]
Contiki-NG [>,] and.the Con.tiki precursor are both operating RIOT Confign- RO RAM
systems targeting constrained devices. The operating systems use an ration

event-driven épproach, relying on a cooperative schec‘julmg ‘mecharylsm Basic RTOS 32KkB 28KB
approach using protothreads. Protothreads provide a lightweight 6LOWPAN 385kB 10.0kB
pseudo-threading mechanism. As the operating system uses coop- JavaScript 166.2kB 29.1kB
erative scheduling, priorities are not supported and the operating OTA-enabled 111.0kB 17.5kB
system relies on each process to yield voluntarily at some point during

execution.

2.3.3 FREERTOS

FreeRTOS [20] is a popular RTOS used for Real-Time tasks and ported
to multiple platforms. The preemptive microkernel supports multi-
threading. FreeRTOS does not provide a network stack, multiple
third-party network stacks can be used for internet connectivity with

2.4

FreeRTOS. FreeRTOS is currently developed by Amazon Web Services
and is available under a modified GPL license allowing commercial use.

2.3.4 ZEPHYR

Zephyr [173] also follows a microkernel approach with multi-thread
support. Zephyr provides its own network stack, including support for
links oriented towards low-power devices such as IEEE 802.15.4 and
Bluetooth LE. Zephyr is developed under the Linux Foundation as
operating system for resource-constrained systems.

2.3.5 NUTTX

NuttX [160] is a RTOS under the Apache foundation. Emphasis is
on adherence to technical standards and small footprint to scale
from 8 bit to 64 bit systems. Main governing standards for NuttX are
the Portable Operating System Interface (POSIX) and American
National Standards Institute (ANSI) standards. Unix and other RTOS
interfaces are adopted and adapted where needed to for the constrained
embedded environment.

2.3.6 MONGOOSE OS

Mongoose OS is an loT firmware development framework for con-
strained devices. It provides built-in integration for cloud providers
such as AWS |oT, Google loT Core, Microsoft Azure, Adafruit 10 and
other generic MQTT servers. Over-the-air firmware updates and remote
management is supported out of the box and it supports cryptographic
accelerators and mbed TLS [110] for security.

2.3.7 TOCK

Tock [108] emphasises security on constrained embedded systems,
leveraging the Rust programming language and hardware security
features. Tock isolates different software components into capsules to
provided memory protection and parallelization.

The lack of MMUs on microcontrollers restricts operating systems
often in terms of isolation capabilities, the process memory isolation
available on commodity hardware operating systems is not a given
on microcontrollers. While the MPU provides an alternative way of
protecting the memory space of microcontrollers, it has been shown to
be difficult to apply for operating systems [174]. The result of this is
that address space separation is not commonly used, or must be
explicitly designed for in the operating system. For example as used
with the previously mentioned Tock embedded operating system [109].

2.4 SECURITY PRIMITIVES

Management of software on a device over the network must be
secured to prevent malicious actors from interfering with the device.
Within 10T this requirement can be difficult to ensure, as adding extra

CHAPTER 2: BACKGROUND 19

2.4.3

security measurements after deployment is impossible without update
capabilities, and extra care is required to address the security of
devices [73]. This starts with the goals of security themselves.

2.4.1 SECURITY ASPECTS

Three main aspects are to be considered with security [141]:

+ Confidentiality: ensuring the transported data is secret and
private.

+ Integrity: ensuring the data is trustworthy accurate, complete,
and uncorrupted.

« Availability: ensuring the machines are accessible for the relevant
actors.

Different types of cryptographic primitives have been developed to
address the challenges posed by these aspects [139].

2.4.2 SYMMETRIC KEY ENCRYPTION

Symmetric key encryption provides confidentiality based on a single
key shared between senders and recipients. Two types of symmetric
key encryption primitives can be distinguished: block ciphers and
stream ciphers.

Block ciphers operate on fixed-length groups of bytes, termed blocks.
Every type of block cipher uses a mode of operation for encrypting
messages longer than a single block size: counter (CTR), cipher block
chaining (CBC) or counter with MAC (CCM) among others. As opposed
to block ciphers, Stream ciphers operate on individual bits, one at
a time, and the transformation varies during the encryption. The
distinction between these two modes is not always as clear as some
modes used with block ciphers act effectively as stream cipher, such as
counter mode with AES.

The main symmetric key encryption cipher used is AES [138], a block
cipher with 128 bit blocks. The block cipher is always combined with
different modes to allow for larger messages. Commodity desktop
hardware often has specialized hardware available for this block cipher,
and microcontrollers sometimes have a specialized peripheral for AES
operations.

Another common symmetric key cipher is the ChaCha [34], a 256 bit
stream cipher. ChaCha is standardized with 20 quarter rounds and the
Poly1305 MAC code [36] to protect both confidentiality and integrity
in a single cipher [128]. The advantage of ChaCha is the simple
integer operations required per round, restricted to addition, bitwise
exclusive OR and bitwise rotations. This ensures that, even with the
limited processing capabilities of microcontrollers, high-throughput
implementations are possible [61].

CHAPTER 2: BACKGROUND 20

2.4.4.0

2.4.3 PUBLICKEY CRYPTOGRAPHY

Public key cryptography provides cryptographic primitives with pairs
of related keys. One of the keys of a pair can be public and openly
distributed without compromising the security of the algorithm. Public
key cryptography is used mainly in two ways, digital signatures and
public key encryption.

Digital signature primitives allow the owner of the secret key to
generate a signature for a specific message. Anyone with access to the
public key can verify that the message was indeed signed by the holder
of the private key and was not tampered with.

Public key encryption allows for encrypting payloads with the public
key of the pair. Only the holder of the private key can decrypt the
message.

Public key cryptography relies on mathematical problems termed
one-way functions. Current development aims to provide a new set of
primitives resistant to quantum computers, so-called post-quantum

cryptography [37].

Digital signatures are used to verify the authenticity of a message,
where public key encryption is used to ensure both confidentiality
and authenticity of the message. Examples of primitives used for
public key are the elliptic curves using the P-256 prime fields defined
by National Institute of Standards and Technology (NIST) [156] and
the Curve25519 [35] elliptic curve, which are discussed more in
subsection 2.6.2.

2.4.4 HASHFUNCTIONS

A hash (or digest) function is any function which maps an arbitrary
sized input to a fixed-size output value. As such the resulting hash can
serve as a representative image of the input data. Hash functions
are used when a fixed-size representation of arbitrary input data is
required, for example with digital signatures the hash of the payload is
signed. Hash functions are often relative easy to compute, while the
inverse operation is nearly impossible. Cryptographic hash functions
must have special properties desirable for cryptographic applications:

+ Preimage resistance: For all possible outputs, it is computation-
ally infeasible to find an input that hashes to that output.

+ Second preimage resistance: It is computationally infeasible
to find any second input which has the same output as any
specified input.

« Collision resistance: It is computationally infeasible to find any
two distinct inputs which hash to the same output.

SHA-256

SHA-256 [85,] is one of the most actively used hash functions
currently relevant. It provides a 256 bit hash output based on arbitrary
input.

CHAPTER 2. BACKGROUND 21

2510

SHA-3

SHA-3 is the latest hash algorithm standardized by NIST [66, 129] hash
algorithm. The hash algorithm is internally completely different from
SHA-256, it is based on the Keccak [38] permutation. This provides an
alternative in case the internal structure of SHA-256 is broken.

2.5 SOFTWARE UPDATES FOR
CONSTRAINED DEVICES

An |oT firmware update solution is a special case of software update,
and requires special care to take the earlier mentioned constraints
of the device and connectivity into account. Mainly, three areas of
work [51] are identified, namely:

« Embedded software design on low-end IoT devices.
« Back-end update framework to describe the firmware update.

« Network transport of the firmware towards the loT devices.

2.5.1 EMBEDDED SOFTWARE DESIGN ON
LOW-END IOT DEVICES

The software on an |oT device has to be prepared to support a firmware
update mechanism. The device requires a bootloader, the logic that is
executed first when the device boots and determines which firmware it
launches. Sometimes devices are equipped with multiple bootloaders;
for example, a stage 1 bootloader in the ROM and a stage 2 bootloader
that can be updated. The reason for such designs is security-related as
an update of the bootloader can lead to a bricked device. Whenever a
bootloader is present on a device, the memory layout of the hardware
has to be considered, for example the firmware must be linked in the
correct position (with offset) for the device.

A typical firmware update requires a number of steps:

1. Adeveloper recompiles the code and generates an entirely new
firmware image, which is then distributed to the device.

2. The flash memory of the IoT device is split into memory regions
(slots) containing (i) the bootloader and (ii) firmware images
(with some metadata).

3. The new firmware is stored into one of the available slots.

4. The loT device is then reset so that the bootloader can boot the
new firmware image [15].

This approach is used, for example, by MCUboot [161] and ESPer [72].
On top of these steps, additional features can be added to reduce the
size of the network transfer or increase the granularity of the software
update. These options are not mutually exclusive and can be deployed
together for additional gains.

CHAPTER 2; BACKGROUND 22

252

PARTIALUPDATES THROUGH DYNAMIC
LOADING

One option to reduce the update size is by increasing the granularity
of the targeted firmware binary. This allows for updating only part
of the binary, instead of the full firmware binary. Multiple different
approaches to increase the granularity of the firmware image exist.

One way is to enable partial updates is via dynamic loading of binary
modules [64, 140]. The firmware must support dynamic loading of
parts of the firmware. This allows for targeting specific areas of the
binary via the updates, targeting only the part where the update is
required.

Another simpler option is using component-based programming [175,

] aim to simplify dynamic modification and reconfigurability of
the system on constrained |oT devices by enforcing black-box-style
interactions between system modules.

Partial updates of software can also use scripts instead of binaries [28],
whereby pieces of interpreted language are updatable on devices. Only
the content of the scripts are updated and the firmware responsible for
interpreting the scripts is not updated. Popular environments for this
use JavaScript, WebAssembly or Python.

DIFFERENTIAL UPDATES

Another approach to reduce size of the firmware update is to use
differential binary patching [98]. This allows for patching only part
of the binary during an update, decreasing the size of the update.
Compared to partial updates, this does not require separate modules in
the binary, and the full firmware can be updated with a single update.
Arequirement for this is that the exact running firmware used as base
for the differential update is known.

BINARY COMPRESSION

Lightweight compression schemes such as [27] can be used to apply
binary compression to the firmware update [158]. This decreases the
size of the transported binary and shifts part of the burden to the
target device, as the binary needs to be decompressed before it can be
written to the memory of the device.

2.5.2 UPDATE FRAMEWORK BACKEND

The second aspect of loT firmware updates concerns the backend
framework and securing the supply chain of IoT software. The Internet
Engineering Task Force (IETF) Software Updates for Internet of Things
(SUIT) working group specifies a simple back-end architecture [126] for
loT firmware updates. In addition to authentication and integrity
protection, even when updates are stored on untrusted repositories,
the SUIT specifications enable encrypting the firmware image, to
protect against attacks based on reverse engineering. SUIT followed
previous work such as FOSE [63] which proposed firmware encryption

CHAPTER 2: BACKGROUND 23

254

and signing using JavaScript Object Notation (JSON) and Javascript
Object Signing and Encryption (JOSE).

The Update Framework (TUF) [162] and Uptane [104], designed for use
in connected cars, aim to ensure the security of a software update
system, even against attackers who compromise the repository or
signing keys. ASSURED [26] builds on TUF to improve support for
constrained loT devices by leveraging a trusted intermediate controller
between the update repository and loT device. CHAINIAC [127] is
another approach that uses a blockchain-like mechanism to attest to
the history of prior updates, even without central authority.

2.5.3 NETWORKTRANSPORT TO THE
FIRMWARE TOWARDS THE IOT
DEVICES

The third aspect of loT firmware updates concerns the dissemination
of software through the network. As mentioned earlier, the class of
devices is often connected via a constrained type of connectivity to a
network. The transport used to disseminate the updates must take this
into account as not to put a too great burden on the network. The
variety of approaches to this topic, as presented in recently published
literature, includes protocols that optimize the dissemination of
updates through multiple paths in a multi-hop, low-power wireless
network [90]; updating network stack modules to reconfigure the
network on the fly [176]; and using the Message Queuing Telemetry
Transport (MQTT) protocol to disseminate software updates to a fleet of
loT devices [72]. 6LOWPAN protocols [148] enable end-to-end network

connectivity from constrained IoT devices to anywhere on the internet.

The IETF Trusted Execution Environment Provisioning (TEEP) working
group [92] is standardizing a transport mechanism to update trusted
applications running in trusted execution environments (TEEs), such as
Arm TrustZone and Intel SGX.

254 OPENSTANDARDS FOR SECURE
CONSTRAINED FIRMWARE UPDATES

When considering open standards applicable for implementing
firmware updates in the constrained device space, multiple standards
are available or in active development. Some of these, such as CoAP
mentioned already, provide a transport for payloads suitable for
constrained devices.

The SUIT specifications include an architecture document [126], an
information model description [125], and a proposal for a manifest
specification [7].

To achieveits goals, SUIT builds upon a number of other open standards
that provide generic building blocks. In particular, the Concise Binary
Object Representation (CBOR) [42] specification is used as a data
format for serialization. CBOR is a schema-less format optimized for a
small message size using a binary encoding. Furthermore, the CBOR
Object Signing and Encryption (COSE) [143] specification is used to

CHAPTER 2. BACKGROUND 24

25.4.0

cryptographically secure data serialized with CBOR. COSE defines a
variety of structures, among them the s gn structure, which specifies
how to protect a payload against tampering by using a cryptographic
signature.

When taking TUF/Uptane [104] as a reference, for instance, the SUIT
manifest format could provide Uptane-compliant (custom) metadata
about firmware images. The TUF standards neither target interoper-
ability, nor specify concrete metadata formatting, contrary to the SUIT
standards.

STANDARDS FOR IOT FIRMWARE TRANSPORT

A number of protocols provide specifications for transferring a firmware
update over the network. Basic transport schemes enable a so-called

Device Firmware Upgrade (DFU) over a specific low-power Media Access
Control (MAC) layer technology, such as Bluetooth, or over a specific
bus technology, such as USB. On the other hand, to transport firmware
over several hops, or over heterogeneous low-power networks, the
IETF suite of protocols standardized a network stack combining CoAP
over UDP [147] and CoAP over TCP/TLS [148]. CoAP offers features
equivalent to HTTP but tailored to constrained loT devices. The
6LoWPAN specification was designed to offer an adaptation layer for
networks that cannot directly use IPv6. To provide communication
security, DTLS and TLS profiles [163] were standardized for use in loT
deployments.

FIRMWARE UPDATE METADATA

The firmware update requires extra information that describes instruc-
tions for the target device on how the new firmware must be installed
on the device. The IETF SUIT working group is currently standardizing
a format for describing firmware updates. The SUIT group defines a
so-called manifest, which provides:

1. Information about the firmware required to update the device.

2. Asecurity wrapper to protect the metadata end-to-end.

STANDARDS FOR REMOTE IOT DEVICE
MANAGEMENT

One of the most prominent open standard for loT device management
is the Lightweight Machine-to-Machine (LwM2M) protocol [132, ,

] developed by OMA SpecWorks, a merger between the Open Mobile
Alliance (OMA) and the IP Smart Object (IPSO) Alliance. To transfer
data, LwM2M v1.1 uses CoAP, which can be secured with DTLS [163] or
TLS [44]. The LwM2M specifications define a simple data model and
several RESTful interfaces for remote management of IoT devices. The
interfaces enable devices to register to a server, provide information
updates, and obtain keying material. A large number of objects and
resources have already been standardized to support commonly used
sensors, actuators, and other resources. Among the standardized
objects is the firmware update object.

CHAPTER 2; BACKGROUND 25

2.6

The CoAP Management Interface (CORECONF) [166] is a more recent
design and standardized by the IETF. CORECONF uses CoAP and a data
model based on the Yet Another Next Generation (YANG) modeling
language [40], and aims to reuse existing Simple Network Management
Protocol (SNMP)-defined objects and resources. CORECONF is still
in development, and a firmware update mechanism has not yet
been defined. Such extension might however be defined in a future
extension.

The Open Connectivity Foundation, the result of a merger between
the UPnP Forum, the Open Interconnect Consortium (OIC), and the
AllJoyn Alliance, standardizes an |oT device management protocol
operating on top of CoAP and TLS/DTLS for communication, similarly
to LwM2M. The OCF defines a data model with RESTful APl Modeling
Language (RAML) as the data modeling language. While initially
targeting bigger loT devices in smart home environments, the OCF is
now also considering other industry verticals.

Earlier work on device management for loT devices use remote
procedure calls instead of a RESTful design. For instance TR 69 [48],
also known as the CPE WAN Management Protocol (CWMP) developed
by the Broadband Forum, formerly known as the DSL Forum, offers
firmware update functionality on higher-end IoT devices, such as
Internet-connected printers. The successor of TR 69, called User
Services Platform (USP) [49], was recently released by the Broadband
Forum.

2.6 AUTHENTICATION THROUGH
DIGITAL SIGNATURES

Authenticating a specific payload for verification on the receiver side is
possible via digital signatures. Providing this security guarantee for
updates is mandatory as otherwise the authenticity of the firmware
update cannot be guaranteed. The payload is signed with the private
key stored and protected by the sender, and the receiver can verify that
the message has not been tampered with the public key provisioned or
received earlier. For this, the message, signature and public key are
combined in a function that returns a result indicating a correct or
tampered message.

Multiple different schemes exist providing digital signatures each with
their own properties, including key sizes and signature sizes. One
main difference between digital signature algorithms is whether the
underlying problem they are based on is resistant against a quantum
computer.

As with pre-quantum cryptography, post-quantum cryptography
is designed to run on regular hardware. However, post-quantum
crypographic primitives are designed to resist adversaries with access to
both classical and quantum computers. For pre-quantum cryptography,
adversaries with access to quantum computers can leverage specific
algorithms [78, 150] to break these cryptographic primitives. When
condisering post-quantum digital signatures, these signatures must

CHAPTER 2. BACKGROUND 26

2.6.1.0

provide a similar security level, while providing resistance against
attacks from both type of computers.

2.6.1 POST-QUANTUM SIGNATURE
SCHEMES

Multiple different types of post-quantum digital signature schemes
have been developed [149]. These can be classified based on their
underlying hard problems that guarantee their security.

HASH-BASED SIGNATURES

Hash-based signatures are a form of post-quantum digital signatures
based on the security of hash functions. They are among the oldest
digital signature schemes available. The security of hash-based signa-
tures relies on the difficulty of inverting cryptographic hash functions.
Hash-based signatures in general provide very fast verification at the
cost of very large signatures. One of the hash-based signatures has been
standardized as Hierarchical Signature System (HSS)/ Leighton-Micali
Signature (LMS) [118]. The main issue of hash-based signatures is the
stateful nature of the private key, the private key must be update after
every signature and can be used a limited number of times.

LATTICE-BASED SIGNATURES

The lattice-based signatures are based on hard problems in Euclidean
lattices. In general, these schemes offer fast signing and verification as
advantages, but in turn they generate very large signatures. Examples
of Lattice-based signature schemes are the CRYSTALS-Dilithium [113],
NTRUSign [89] and Falcon [71].

MULTIVARIATE-BASED SIGNATURES

Multivariate signature schemes are based on the complexity of solving
certain low-degree polynomial systems in many variables. Analysis in
the field of multivariate cryptography [39] questioned the security level
of some of these signature schemes.

ISOGENY-BASED SIGNATURES

Isogeny-based cryptography is based on the difficulty of computing
unknown isogenies between elliptic curves. Isogeny-based signature
schemes inherit small parameter sizes from pre-quantum elliptic-curve
cryptography, for example SQISign [60]. This property makes them
interesting for microcontroller applications. On the other hand they
also inherit and increased the computational burden caused by the
heavy algebraic calculations of ECC.

CODE-BASED SIGNATURES

Code-based cryptosystems rely on the difficulty of hard problems
of the theory of error-correcting codes. For example the McEliece
key exchange scheme [117] is among the oldest of all public-key

CHAPTER 2: BACKGROUND 27

27 CHAPTER 2: BACKGROUND 28

cryptographic systems. Code-based signature schemes however, are
much less well-established.

ZERO-KNOWLEDGE-BASED SIGNATURES

A relative new category of post-quantum digital signatures use zero-
knowledge-based techniques. They combine algorithms from symmet-
ric cryptography with technique known as Multi-Party Computation In
The Head [96].

Table 2.2: Overview of post-quantum signature candidates. “Security analysis” reflects the maturity of analysis of the scheme: the
age of the scheme, recent attacks, and how well-studied the underlying hard problem is, are considered.

Paradigm Scheme Security Analysis Signature Public Key Private key
Hash LMS Mature 4756 B 60B 64 B

SPHINCS+-128 Mature 17088B 32B 64 B
lattice Dilithium Less Mature 2528B 1312B 2420B

Falcon Less Mature 1281B 897B 666 B
Multivariate Rainbow | Not Mature 66B 157800B 101200B

GeMSS Not Mature 417416B 14520B 48B
Isogeny SQISign Not Mature 204B 64B 16B
Code WAVE Not Mature 1625B 13 MB —
Zero-knowledge Picnic3-L1 Not Mature 13802B 34B 17B

2.6.2 PRE-QUANTUM ALGORITHMS

Multiple types of pre-quantum cryptographic digital signature schemes
are available. For this comparison only digital signature schemes
suitable for implementation on small microcontrollers are considered.

ELLIPTIC CURVE

Elliptic curve cryptography makes use of the algebraic structures of
elliptic curves over finite fields. This provides relative small key and
signature sizes with acceptable verification speed. Elliptic curves
have been studied extensively with multiple different elliptic curves
available for selection. In the field of loT the P-256 curve [156] is often
used, and available in implementations such as TinyCrypt [93, 114].

EDWARDS-CURVE DIGITAL SIGNATURES

EdDSA [35] is a digital signature scheme using a variant of Schnorr
signatures based on twisted Edwards curves. The goal is to be faster
than existing digital signature schemes while retaining the same level
of security. Two signature schemes are defined for EdDSA:

+ Ed25519, using Curve25519 with SHA-512 hash function.
+ Ed448, using Curve448 with SHAKE256 hash function.

2.71.0

2.7 EMBEDDED SOFTWARE
VIRTUALISATION AND
SANDBOXING

A sandbox provides a controlled environment in which software can be
executed in full isolation from the host system. The main purpose is to
restrict access to critical operating resources while still being able to
execute the software. This limited access provides a mechanism to run
software without fully trusting the sandboxed application, which could
be malicious or flawed. It provides a safe space to test and analyze
software without putting the system at risk. One possible approach to
sandboxing are VMs.,

The vast majority of prior work on lightweight virtualisation run-
times [123] does not target microcontrollers, but microprocessor-class
computers. Recent examples include for instance AWS Firecracker [18]
for serverless computing, WebAssembly [82] for process isolation
in Web browsers, or eBPF [69,] for debug and inspection code
inserted in the Linux kernel at run-time.

Roughly two types of sandbox environments can be distinguished that
each provide a sandbox environment to the host system. The first is
the script environment, with the second one being the VM.

2.7.1 SCRIPTENVIRONMENTS

Script environments on microcontrollers allow for interpreting and
execution of scripted applications. The applications are written by a
developer and directly loaded on the microcontroller. An optional
in-between step is minification of the script, where size and execution
overhead caused by optional tokens in the script is removed.

PYTHON

One popular language running on microcontrollers is Python. For
example MicroPython [77] is a very popular scripted logic interpreter
used on microcontrollers. Another alternative is CircuitPython [16]
runtime. Both options are geared towards hobbyists and aim for an
easy and rapid development flow, while abstracting away the specifics
of the microcontroller used.

Small Python runtimes are used on ESP8266 microcontrollers in prior
work such as NanoLambda [76]. This runtime provides a scheduler
to intelligently place functions across multi-scale loT deployments
according to resource availability and power constraints.

JAVASCRIPT

Multiple implementations of JavaScript environments are also available
for constrained devices [79]. One advantage of JavaScript is the
expressiveness of the language, trading a decrease in script size for
complexity in the interpreter.

CHAPTER 2: BACKGROUND 29

272

Another advantage of original design of JavaScript, as scripting
language in browsers, is the event-based nature. This makes it a
good fit for power-efficient microcontrollers where tasks can run
on-demand when an event needs to be processed. The rest of the time
the microcontroller can be reduced to a power-efficient sleep mode.

Multiple engines for executing JavaScript on microcontrollers are
available. Usually these engines require additional code, written in the
host language to access functionality from the hardware and host
platform.

JerryScript [75] is one of these engines. It was initially started by
Samsung in 2014, but now supervised and sponsored by the OpenJS
Foundation. The JerryScript engine is provided as a library and
integration into a project is required before it can be used. One of such
project, provides an Over-the-air updatable environment on top of the
RIOT operating system [29]. However, complementary mechanisms
should be used to guarantee mutual isolation between scripts (such as
SecureJS[103]).

A similar project is Duktape [165], an embeddable JavaScript engine,
with a focus on portability and compact footprint. The engine also
requires a platform or operating system to host it, but it requires only
minimal functionality from the host. Duktape is fully compliant with
ECMAScript version 5 and partly version 6.

mJS [54] is another embeddable engine for JavaScript. Where other
interpreters try to support the full ECMAScript standard, mJS intention-
ally does not implement the full language. The main advantage is a
reduction in required flash and RAM, only 50 kB of flash and 1 kB of
RAM is required to host the engine. mJS is mainly used in the Mongoose
0S framework [55] for [oT systems.

Espruino [170] is a stand-alone JavaScript interpreter with a very
active community and actively developed ecosystem. When used on a
microcontroller, applications can be written entirely in JavaScript
without requiring any C or C++ knowledge.

A different approach is used by the Moddable SDK [88, 121]. Instead of
running a JavaScript interpreter on the device, the SDK compiles the
JavaScript into small optimized bytecode. The resulting bytecode can
be flashed on the device and executed by the bytecode interpreter
from Moddable.

LUA

ALua code interpreter is sufficiently small to embed on microcontrollers.
Prior work applied Lua as a scripting environment to support dynamic
orchestration of multiple networked microcontrollers [80]. Another
approach leverages a Lua VM for partial updates through LoRaWAN-
connected devices [130].

CHAPTER 2: BACKGROUND 30

2.72.0

2.7.2 VIRTUAL MACHINES

Virtual machines are ubiquitous on large server deployments and are
used to isolate different tenants and systems from each other. This
allows large cloud providers to rent out compute resources without risk.
Server hardware includes hardware support for virtual machines (VMs)
operations to allow for minimal overhead when virtualising software.

On constrained embedded microcontrollers, specialized instructions
and support for virtual machines is not available. As mentioned before,
even memory isolation can be challenging. The environment in which
the VM is used, provides less isolation by default to the VM runtime and
protection of the host system must fully happen from the VM runtime.
The limited resources provided by the class of devices puts additional
strain on the resources provided to the VM.

JAVAVIRTUAL MACHINES

Java VMs execute Java bytecode. A large number of Java Virtual
Machines [25, 50, 67, , ,] are available for constrained
devices.

CapeVM [137] is a Java VM implementation offering a full sensor node
abstraction. The VM bytecode is compressed to reduce transmission
costs and to save power. The bytecode itself is compiled ahead of time
to native instructions.

Darjeeling [50] uses an adapted Java VM modified to use a 16 bit
architecture. Itis designed for 8- and 16-bit processors for use on
sensor nodes. Only a subset of the Java VM is implemented to reduce
code complexity and memory usage.

A very specific application of Java VMs is Java Card. It allows for
running Java-based applications securely on smart cards and other
cryptographic tokens. Choupi OS is an MPU-hardened Java Card Virtual
Machine [46]. The MPU-hardened Java Card Virtual Machine project
aims to secure JavaCard applets running on shared hardware by
utilizing the MPU hardware. The MPU safeguards executing contexts,
each hosting a Java Card byte code interpreter, confining each applet
within its dedicated context and interpreter. The MPU configuration is
established at compile-time and dynamically reconfigured to align
with the executing context.

WEBASSEMBLY

WebAssembly (Wasm) [82] is a virtual instruction set architecture
developed and standardized by the World Wide Web Consortium (W3C)
and primarily aimed at portable web applications. The instruction set

allows for binaries small in size, to minimize transfer time to the client.

The sandbox provided by implementations offers strong guarantees on
memory access. Both of these properties aim to ensure security while
requiring only limited memory footprint on the platform target.

The WebAssembly VM specifies the use of both a stack and a flat heap
for memory storage. The stack is required by the architecture, and can

CHAPTER 2: BACKGROUND 31

2720 CHAPTER 2: BACKGROUND 32

be configured to any size. An interface for allocating heap memory
is provided by the standard. Note that the specification mandates
memory allocations in chunks of 64 KiB (pages) which is not always
possible on smaller loT platforms.

TOOLCHAIN & SDK Asoftware development kit is available to
write applications for WebAssembly. The full workflow for development
and executions of applications is depicted in Figure 2.1 Wasm uses
the LLVM compiler: it is thus possible to write applications in any
language supported by LLVM, such as C/C++, D, Rust, and TinyGo among
others. Note that for C and C++, the WebAssembly binaries are created
using the emcc toolchain, which combines the EmSDK with LLVM. A
standardized interface is specified for host access in a POSIX-like way is
provided by the WebAssembly System Interface (WASI) standard [167].
It offers standardized access to operating system facilities such as files,
network sockets, clocks and random number.

INTERPRETER Once the Wasm binary is created, it can be
transferred to the loT device and on which it can be interpreted
and executed, as shown in Figure 2.1. Several interpreters exist, for
example, minimized WebAssembly runtimes adapted to run on 32-bit
microcontrollers were proposed, such as WAMR [52] and WASM3 [151].

WASM3 uses a two-stage approach, whereby the loaded application is
first transpiled to an efficient and optimized executable form which then
can be executed in the interpreter. WAMR has multiple compile-time
tunables to configure which execution strategy must be used. Both a

Just-in-Time (JIT), where the WebAssembly bytecode is optimized to
native execution, and an interpreted execution strategy are available.

: 1oT Operating System

PR -~ OS Facilities
' Bindings | 1WAS|1 :

Intermediate

Bytecode : Compilation
[LLvM] [EmSDK| EVM Sandbox

Sandboxed
Execution

Figure 2.1: Wasm code development and execution workflow with the WASM3 VM.

EXTENDED BERKELEY PACKET FILTERS

Berkeley Packet Filter (BPF) [69] is a small in-kernel VM specifically
for sandboxing small applications transferred from user-space into
the kernel. Originally its purpose was for filtering network packets,
for example: only passing packets to user space matching a set

2.72.0

of requirements. However, some ultra-lightweight virtualisation
approaches have been proposed for microcontrollers. RapidPatch [87]
uses an eBPF runtime to provide a hot patching framework for RTOS
firmwares.Within the Linux kernel the VM is extended and renamed
to eBPF to allow for various purposes not necessarily related to
networking. It provided a small and efficient facility for running custom
code inside the kernel, hooking into various subsystems.

The state-of-the-art eBPF architecture is 64-bit register based VM with a
fixed stack. 10 general purpose registers are available together with a
read-only stack pointer. The stack itself is specified as fixed at 512 B. A
heap is not contained in the specification, as an alternative the Linux
kernel provides an interface to key-value maps as persistent storage
between invocations. These maps can also be interfaced with from
user space applications. The limited stack size and absence of a heap
put only minimal requirements on the RAM a platform has to provide
for the VM.

The VM is suitable for isolating the operating system from the virtualised
application: all memory access, including to the stack, happen via load
and store instructions. Moreover, branch and jump instructions are
also limited, the application has no access to the program counter and
ajump is always relative to current program counter. The VM does not
provide facilities to directly influence the program counter. Both of
these can be implemented with the necessary checks in place to limit
access and execution.

Interfacing with the operating system facilities can be done by providing
the necessary bindings on the device. These can then be accessed
during execution from the VM.

CHAPTER 2: BACKGROUND 33

CHAPTER 3

COMPARATIVE EVALUATION OF
POST- AND PRE-QUANTUM DIGITAL
SIGNATURES FOR CONSTRAINED
DEVICES

Any communication with networked devices for delivering adjustments
to the device must at least be authenticated with digital signatures.
This is required to prevent unauthorized parties from modifying the
communication to the device and in turn the behaviour of the device.
Without any proof of origin, the device will not be able to verify the
origin of the request.

In the space of constrained loT devices a requirement for secure authen-
ticated communication is also present. Protecting the communication
with digital signatures allows the device to verify the origin of the
communication. Without the option to communicate securely with
constrained embedded devices, devices cannot be securely updated
and can quickly become a liability when they become part of a botnet.

With the device lifetime of small embedded constrained devices
measured in years, protecting communication of these devices against
future development is a must. Post quantum signatures are a strict
requirement with respect to the future of quantum computing. This
allows for secure communication with these devices even when
pre-quantum cryptography is no longer an option.

In this chapter | present benchmarks on both post-quantum and
pre-quantum digital signatures and show the trade-offs required when
deploying one of these primitives on the devices. This collaborative
work has been presented previously in “Quantum-Resistant Software
Update Security on Low-Power Networked Embedded Devices” [4].

3.1 IMPACT OF CRYPTOGRAPHIC
PRIMITIVES ON FIRMWARE

Adding cryptographic digital signature primitives to constrained
devices is not without cost and careful consideration is required with

3.2 CHAPTER 3. COMPARATIVE EVALUATION OF DIGITAL SIGNATURES 35

the type and implementation of the library. Cryptographic primitives
implemented for these devices must be written with the resource
constrained nature of the devices in mind. This implies that the imple-
mentation must not require large amounts of memory and must not put
a too large computational burden on the processor. Often a trade-off
must be made between the cryptographic strength of the primitive and
the resources required for the operation. Different optimizations
are possible for implementations and with unconstrained devices
usually memory is traded in favour of a decrease in computational
cycles. These type of optimizations are not always possible on memory
constrained devices.

Furthermore, other considerations are possible with cryptographic
libraries. For example, a generic big number library can be reused by
multiple cryptographic primitives implemented by a single library, or
the library implements the operation as a specialized function. When
only a single primitive is required on the device, a big number library
will require more memory on the device.

The extra computational load required by some implementations
does not only increase the response time of the devices. Extra cycles
spent on cryptographic operations also increases the overall power
consumption of the device as the device is active for longer durations.

Another concern is the size of the signature generated by the primitive.
Depending on the algorithm used, signatures can grow to sizes that
dwarf the size of the payload protected. This in turn can put significant
strain on the network connectivity of the device. Furthermore, the
device must hold the full signature in memory after the transfer to
verify the origin of the message.

3.1.1 FIRMWARE UPDATE SIZES AND
POST-QUANTUM SIGNATURES

When considering the impact of post-quantum signatures and their
impact on firmware updates, multiple aspects of the signature algo-
rithm must be considered. On the embedded devices, only signature
verification is relevant as that is the only operation required for the
verification of the firmware binary. Based on the estimates from
Table 2.1, four broad categories of updates for low-power embedded
[oT can be distinguished

1. Small software module update, of 5 kB.

2. Small firmware update without cryptographic libraries, ~50 kB.
3. Small firmware update including cryptographic libraries, =50 kB.
4. Large firmware update including cryptographic libraries, 250 kB.

When considering the update protocol itself, a manifest based on the
SUIT specification can have a real world size of 419 B, excluding the
signature.

3.21.0 CHAPTER 3. COMPARATIVE EVALUATION OF DIGITAL SIGNATURES 36

3.2 CRYPTOGRAPHIC LIBRARY
SELECTION

The cryptographic libraries compared here implement one of the
existing digital signature schemes. Both post-quantum and pre-
quantum digital signatures are compared, where the pre-quantum
digital signatures are used as baseline for the comparison. Especially
the post-quantum cryptographic implementations must be selected
based on the following properties:

+ Key size: The public key must fit in the memory of the microcon-
troller.

« Signature size: The signature size puts a burden both on the
memory of the microcontroller and the network transfer size.

« Runtime performance: As mentioned before, computational
burden of the signature verification in turn influences the battery
life and responsiveness of the microcontroller application.

« Maturity: The post-quantum digital signature schemes have
varying levels of analysis and the security level of some of the
algorithms is still subject of debate.

The NIST PQC project has dominated research in the post-quantum
cryptography in recent years, with multiple digital signature algorithms
submitted. The candidates resulting from this project are a natural first
selection for credible post-quantum digital signature algorithms, as
these have had extensive analysis from the cryptographic community.
However also older post-quantum schemes can be considered such as
the hash-based signature schemes.

3.2.1 PRE-QUANTUM SIGNATURE SCHEMES

For the baseline measurements to compare post-quantum digital
signature schemes, a number of pre-quantum digital signature schemes
and implementations have been selected.

ECDSAIMPLEMENTATIONS

The ECDSA implementation used in this work is the TinyCrypt library.
This library is designed by Intel to provide cryptographic standards for
constrained devices, including the NIST standard P-256 curve.

ED25519 IMPLEMENTATIONS

For Ed25519, two libraries are used, both providing constant-time
finite-field arithmetic based on public-domain implementations.

« C25519: Avery small public domain implementation of the
Ed25519 digital signature scheme and the x25519 key exchange.

« Monocypher: Another implementation of cryptographic primi-
tives including Ed25519 digital signatures. The main difference

3.2.2.0 CHAPTER 3: COMPARATIVE EVALUATION OF DIGITAL SIGNATURES 37

with C25519 is the use of precomputed tables in Monocypher to
speed up the computation of elliptic curve points.

3.2.2 POST-QUANTUM SIGNATURE
SCHEMES

While a large number of post-quantum signature schemes are available
as shown in subsection 2.6.1, a subset of these are considered for
the evaluation performed in this chapter. When choosing candidate
signature schemes, key and signature sizes, runtime performance, and
maturity with respect to security analysis must all be considered.
While the relatively compact parameters of some isogeny- and code-
based signature schemes may make them interesting for future work
targeting microcontrollers, at present these schemes are far from
theoretical maturity. The true security level of the NIST multivariate
and ZK-based candidates is a subject of current debate, though their
extremely large keys and/or signatures would likely eliminate them
from consideration for constrained embedded devices. The NIST
PQC project has dominated research in post-quantum cryptography
in recent years. Its candidate cryptosystems are a natural first port
of call for credible post-quantum signature algorithms, since they
have had the benefit of concerted analysis from the cryptographic
community — especially the Round 3 proposals, which are candidates
for standardization in the coming years.

However, these are not the only algorithms that should be considered.
For example, among hash-based signature schemes, a comparison
between the older LMS scheme, which is not a NIST candidate, with
the newer SPHINCS+ scheme, which is a NIST Round 3 alternate. LMS
has smaller computational requirements, but the signer must maintain
some state between signatures; SPHINCS+ is a heavier scheme, but it
is stateless. Statelessness is an advantage for general applications,
as tracking the key state increases complexity on the usage of the
signature scheme. However around the use case of firmware updates,
statefulness is natural, as it corresponds naturally to the version
number on the firmware update. As the constrained embedded device Table 3.1: Public key sizes of selected

only requires signature verification, tracking state of the key isnot ~ Signatures
relevant on there, so the lighter LMS is a more natural choice. Algorithm Public Key Size
For the reasons above, the focus of the benchmarks is on three LMS 60B
post-quantum signature algorithms: LMS, Dilithium, and Falcon, Dilithium Il 1312B
representing the hash-based and lattice-based categories. LMS has Falcon 897B
60B public keys and 4756-byte signatures. Dilithium II, targeting Ed25519 32B
NIST security level 2, has 1312B public keys and 2420B signatures. ECDSA P-256 328
Falcon-512, targeting NIST security level 1, has 897B public keys and Table 3.2: Signature sizes of selected
666B signatures. signatures
LMS Algorithm Signature Size
LMS 4756 B
For LMS, the Cisco implementation [58] is used with a small mod- Dilithium II 2528 B
ification, removing calls to malloc since it can lead to memory Falcon 12818
fragmentation. This change might lead to some small improvements in Ed25519 64B

performance, since the kernel already knows the address at compile- ECDSAP-256 64B

3.2.3 CHAPTER 3. COMPARATIVE EVALUATION OF DIGITAL SIGNATURES 38

time rather than only at runtime. For the benchmark, the smallest
parameters proposed in [118, Section 5] is used: that is, SHA-2 with
256-bit output for the hash function (to keep the code as close as
possible to the original implementation [58]) with tree height 5, and 32
bytes associated with each node. For the LMOTS, 32 bytes and 4 bits
of width for Winternitz coefficients is used. The OpenSSL call from
the original code is removed and change for aimplementation of
SHA2-256 provided in their repository [58]. Furthermore, HSS is used
with 2 layers. These parameters satisfy the life cycle of updates: in
particular, the key lifetime will never be surpassed by the amount of
updates.

FALCON

The Falcon implementation provided by PQClean [101,]is used
without any significant structural modifications.

DILITHIUM

Two Dilithium implementations based on PQClean are prepared [101,

I

« Dynamic Dilithium is the basic PQClean implementation. The
first step in signing and verifying is to expand a random seed
given in the public key into a large matrix.

« Static Dilithium modifies the PQClean implementation to pre-
compute the matrix and store it in the flash memory of the
microcontroller. This makes both signing and verification faster,
at the cost of using more flash and reducing flexibility. Only the
flashed key can be used to verify signatures against.

3.2.3 HASHFUNCTIONS

One aspect of digital signature algorithms is that they often require
a digest function to operate on. Ed25519 uses the SHA-512 digest
function, ECDSA has a configurable digest function. Furthermore, hash
functions are often used as image and signed instead of signing the
actual payload.

When considering post-quantum attacks on digest functions, the
outlook is positive. Only a few quantum attacks against SHA-2 and
SHA-3 exist. Grover’s algorithm may be parallelized to find hash
pre-images [31]. This applies to both Merkle Damgard hashes (SHA-2)
and Sponge-based hashes (SHA-3). For collision resistance, the
state-of-the-art in quantum collision search does not drastically reduce
the complexity with respect to classical algorithm [56]. However,
classical attacks for SHA-2 might become a reality [62] at some point,
still causing a decrease in security with SHA-2.

When considering the hash functions in the scope of low power
embedded microcontrollers, the main concern is the memory usage
and run time of the hash function implementation. One aspect to keep
in mind while selecting a hash function is a synergy with the selected

3.3.2.0 CHAPTER 3. COMPARATIVE EVALUATION OF DIGITAL SIGNATURES 39

signature algorithm. Most post-quantum signature algorithms use
SHA-3 in their construction, as candidates for the NIST post-quantum
signature standard are required to be SHA-3/SHAKE compatible, the
current US standard. As space on the microcontroller devices is very
limited, factorization of code is typically desirable. Selecting a single
hash function for both hashing for images and as hash function used by
the digital signature algorithms is desirable. When using post-quantum
signature algorithms, matching these with SHA-3 hash functions used
in other modules on the firmware decreases the overall flash footprint.

3.3 BENCHMARKS

3.3.1 BENCHMARKHARDWARE SETUP

The testbed used for the benchmarks here consists of popular, com-
mercial, off-the-shelf hardware. The boards selected are representative
of the modern 32-bit microcontroller architectures available. For the
memory footprint of the libraries, only the total flash usage of the
library itself was measured. For the timings, the running time of the
operation and the number of kiloticks, based on the hardware clock
and the time spent, was measured.

+ ARM Cortex-M4: The Nordic nRF52840 Development Kit. This
board provides a typical ARM Cortex-M4 microcontroller running
at 64 MHz, with 256 KiB of RAM, 1 MiB flash and a 2.4 GHz radio
transceiver compatible with both IEEE 802.15.4 and Bluetooth
Low-Energy.

+ Espressif ESP32: The WROOM-32 board. This is a small devel-
opment board containing the ESP32 module with the ESP32-
DOWDQ6 chip on board. It provides two low-power Xtensa
32-bit LX6 microprocessors with integrated Wi-Fi and Bluetooth,
operating at 80 MHz, with 520 KiB of RAM, 448 KiB of ROM.

+ RISC-V: The Sipeed Longan Nano GD32VF103CBT6 Development
Board. This provides a RISC-V 32-bit core running at 72 MHz,
with 32 KiB of RAM, 128 KiB of ROM and no wireless connectivity.

RIOT is used as a base firmware setup for these benchmarks, providing
hardware abstraction and timers to benchmark the implementations.

3.3.2 PRE-QUANTUM SIGNATURE
BASELINE

The pre-quantum digital signature algorithms act as a baseline metric
to compare the post-quantum algorithm against.

MEMORY FOOTPRINT

In figure Table 3.3 the flash usage of the pre-quantum digital signature
algorithms is presented. As visible, the Monocypher implementation
requires the most flash on all platforms, with TinyCrypt in the middle
and C25519 requiring the least amount of flash.

333
Algorithm Cortex-M4 ESP32 RISC-V
C25519 Ed25519 5106 B 5608 B 6024 B
Monocypher Ed25519 13852B 17238B 17328B
TinyCrypt ECDSA P-256 6498B 6869B 7452B

SIGNATURE GENERATION SPEED

The signature generation speed is shown in Table 3.4. Timings are
shown both in milliseconds and in kiloticks for every platform. Looking
at the signature generation speed, Monocypher is the fastest imple-
mentation on all platforms. C25519 is the slowest implementation
here, with TinyCrypt again in the middle.

CHAPTER 3: COMPARATIVE EVALUATION OF DIGITAL SIGNATURES 40

Table 3.3: Flash usage for pre-quantum
digital signature algorithms.

Table 3.4: Signature generation speed for pre-quantum digital signature algorithms, measured is the time in milliseconds and the

number of clock ticks for signature generation.

Algorithm Cortex-M4 ESP32 RISC-V

C25519 Ed25519 845ms 54111kT 921ms 73690kT 956ms 68883 kT
Monocypher Ed25519 17ms 1136 KT ~ 21ms 1709kT 16ms 1194 kT
TinyCrypt ECDSA P-256 294ms 18871kT 333ms 26696kT 270ms 19489kT

VERIFICATION SPEED

The verification speed numbers in general show a similar picture as the

signature speed numbers, as visible in Table 3.5. The verification speed

is shown again both in milliseconds and in kiloticks for every platform

benchmarked. Both algorithms need more time for the verification,

with TinyCrypt only slightly slower on verification, but the Ed25519

verification is a bit over twice as slow.

Table 3.5: Signature verification speed for pre-quantum digital signature algorithms.

Algorithm Cortex-M4 ESP32 RISC-V

C25519 Ed25519 1953 ms 125012kT 2165ms 173205kT 2242ms 161475kT
Monocypher Ed25519 40 ms 2599 KT 60 ms 4864 KT 41ms 3013 kT
TinyCrypt ECDSA P-256 313ms 20037kT 374ms 29948kT 308ms 22192kT

Looking at the results in general, the measurements show a large
difference between the C25519 library and the Monocypher implemen-
tation, even though these implement the same signature algorithm. It
clearly shows that the C25519 library is optimized for low memory
usage, where the Monocypher library is build around optimizations to
decrease the algorithm speed. The TinyCrypt library implements a
different signature algorithm and strikes a middle ground in memory
usage and algorithm speed.

3.3.3 POSTQUANTUM CRYPTOGRAPHY
PRIMITIVES

The selected Post-quantum digital signature schemes are deployed on
the same hardware as the pre-quantum algorithms. As the RISC-V

334 CHAPTER 3. COMPARATIVE EVALUATION OF DIGITAL SIGNATURES 41

board selected for the benchmarks is too limited in flash storage, the
benchmark application for Dilithium in dynamic mode is unable to fit
on the flash of the microcontroller and could not be benchmarked on
this architecture.

MEMORY FOOTPRINT

The flash memory footprints of the post-quantum digital signature
algorithms is shown in Table 3.6 As visible all algorithms require more
than 10 KiB to fit on the devices.

Cortex-M4 ESP32 RISC-V

Falcon 57613B 60358B 11122B
Dilithium-dynamic 11664B 12397B —
Dilithium-static 26672B 27197B 25148B Table 3.6: Flash usage for post-
LMS 12864B 15177B 15889B

quantum digital signature algorithms.

SIGNATURE GENERATION SPEED

The signature generation of the post-quantum algorithms is shown in
Table 3.7. LMS is clearly visible as outlier here, requiring multiple
seconds to generate the signature on all platforms. Dilithium in both
modes is relative fast among the post-quantum algorithms.

Table 3.7: Signature generation speed for post-quantum digital signature algorithms.

Cortex-M4 ESP32 RISC-V
Falcon 1172 ms 75020kT 1172ms 93824 kT — —
Dilithium-dynamic 465ms 29788 kT 87 ms 7036 kT — —
Dilithium-static 135ms 8655kT 121ms 9694 kT — —
LMS 9224ms 590354kT 7583ms 606674kT 9105ms 655614 kT

VERIFICATION SPEED

The verification speed of the post-quantum digital signatures is shown
in Table 3.8. All signature schemes are fast to verify, with only LMS
requiring more than 100 ms on the different platforms.

Table 3.8: Signature verification speed for post-quantum digital signature algorithms.

Cortex-M4 ESP32 RISC-V
Falcon 15ms 1004 kT 16ms 1322kT 13ms 975 kT
Dilithium-dynamic 53ms 3407kT 43ms 3508 kT — —
Dilithium-static 23ms 1510kT 21ms 1706 kT 17ms 1237kT
LMS 123ms 7908kT 101ms 8141kT 122ms 8808 kT

3.3.4 HASHFUNCTION BENCHMARKS

Table 3.9 compares three hash function implementations on the
memory usage and speed on an ARM Cortex M4 microcontroller:

3.4.2 CHAPTER 3. COMPARATIVE EVALUATION OF DIGITAL SIGNATURES 42

« RIOT’s default implementation of SHA2-256.

« A compact implementation of SHA3-256 optimized to minimize
flash memory footprint.

« An implementation of SHA3-256 optimized for speed on Cortex-
M4 ARMvTM architectures.

Stack is roughly equivalent across the different implementations,
but speed and flash vary widely: SHA3-256 can offer slightly faster
execution than SHA2-256, but at the price of a 10x larger flash footprint.
For a flash footprint similar to SHA2-256, the comparative speed of
SHA3-256 diminishes drastically for larger inputs.

Table 3.9: SHA-2 and SHA-3 performance on the nRF52840 ARM Cortex-M4 microcontrollers

Ticks to hash input
Flash Usage Stack Usage 64 B 100B 1024B 10240B

SHA2-256 (RIOT) 1008 B 384B 277kT 278KkT 1943 kT 17933 kT
SHA3-256 Compact 1692 B 404B 1336KT 1342kT 10402KT 98448 kT
SHA3-256 fast-ARMv7TM 11548 B 284B 220kT 228KkT 1672kT 15732KkT

3.4 IMPACT OF POST-QUANTUM
PRIMITIVES ON EMBEDDED
DEVICES

3.4.1 THECOST OF POST-QUANTUM
SECURITY

A toe-to-toe comparison between pre-quantum and post-quantum
signatures must consider all of the public key and signature sizes,
running time, and memory requirements. All post-quantum algorithms
have significant larger public key and signature sizes, by well over an
order of magnitude. Compared with standard elliptic-curve signature
schemes, Falcon’s public keys are 28x larger and its signatures are 10.4x
larger; Dilithium’s public keys are 41x larger than elliptic-curve keys,
and its signatures are 38x larger. LMS avoids this spectacular growth in
public key sizes, with keys only 1.875x larger than elliptic-curve public
keys; but its signatures are a massive 74.3x larger than elliptic-curve
signatures.

When comparing the running time of the signature primitives, the
post-quantum signatures have their advantages and disadvantages.
Signature verification is generally considerably faster across all the
devices tested, signing is generally slower however. The comparison of
signing algorithms shown in Table 3.7 and Table 3.4 shows that the
fastest post-quantum algorithm runs in 135 ms which is 7.94x slower
than the Monocypher Ed25519 implementation. However, the reverse
is true when comparing the algorithms on signature verification. The
fastest pre-quantum algorithm runs in 40 ms, which is 2.65x slower
than post-quantum Falcon. Efficient verification is a required and

3.4.2 CHAPTER 3. COMPARATIVE EVALUATION OF DIGITAL SIGNATURES 43

valuable feature for constrained embedded devices, however in this

setting it comes at the price of an increase in stack and flash memory.

3.4.2 THECOSTOF POST-QUANTUM
ALGORITHMS WITH FIRMWARE
UPDATES

Considering a real world firmware updates using these post-quantum
digital signature algorithms, the impact of changing the pre-quantum
digital signatures to post-quantum alternatives can be measured. In
practical terms the SUIT manifest as proposed in subsection 3.1.1 being
419 B large without the signature, increases in size when switching
from pre-quantum signatures to post-quantum.

 Falcon: 419B + 666 B = 1085 B, a 22.24x% increase;
o Dilithium: 419B + 2420 B = 2839 B, *5.87x increase; and
« LMS: 419B + 4756 B = 5175 B, a *9.84x increase.

Now consider the crucial aspect of network transfer costs, and the
memory resources required to actually apply the firmware update on
the loT device. s our measurements to evaluate the relative cost of the
entire SUIT software update process. Visible is that the impact of
switching to quantum-resistant security in SUIT varies widely in terms
of network transfer costs, ranging from negligible increase (1 %) to
major impact (3x more), depending on the software update use case.

Data Transfer

Algorithm Flash Stack 2 3
Ed25519 / SHA2-256 52.4 kB 16.3kB 47kB 53kB
Falcon / SHA3-256 +120 % +18% +1.1% 120%
LMS / SHA3-256 +34 % +1.2% 9% 43%
Dilithium / SHA3-256 +30% +3407% +43% 34%

There are many possible deployments of 10T, and several possible
scenarios for loT software updates. It is safe to assume that the
authorized maintainer, responsible for updating the firmware, has
powerful hardware. Hence, the computational burden of signing is not
the main concern here. On the other hand, a constrained device will be
responsible for signature verification of the update.

As seen above, the cryptography package does not run standalone in
the board: it must coexist with several other modules (including kernel,
network stack, and libraries), and the application itself. One challenge
that was faced in deploying the schemes was sharing stack memory
(and RAM memory). For example, on the RISC-V platform used, the
total RAM memory budget available was only 32 kB for the whole
system, a small but not uncommon amount of RAM for this class of
devices. It was not possible to run Dilithium to sign or verify within
these constraints as the library required more stack than available. In
fact the default stack configuration required adaptation for all of the
post-quantum algorithms used.

Table 3.10: Relative costs for SUIT with
qguantum resistance on the ARM Cortex
M4

351 CHAPTER 3. COMPARATIVE EVALUATION OF DIGITAL SIGNATURES 44

Execution speed is another challenge. Slow signature verification may
impact real-time applications if special care is not taken. Typically, on
low-power loT devices, there is no parallel computing. For instance,
RIOT OS uses a preemptive multithreading paradigm, where a single
thread is running at any given time. If signature verification takes a
long time, running in a high-priority thread, then the system blocks on
this task until completion. It is therefore necessary to carefully tune
the priority of the crypto verification thread so as not to stop other
functionally essential tasks, especially if signature verification is slow.

3.4.3 REAL-WORLD USABILITY OF
POST-QUANTUM DIGITAL
SIGNATURES

Table 3.11: Firmware sizes of the

When considering the four firmware updates from subsection 3.1.1 (as different update options

shown in Table 3.11) and the choice of post-quantum digital signature

for each. Firmware Size

In the case of option 1, a small module update of 5 kB, and option 2, 1 small module 5kB

the small firmware update without the cryptographic library, the 2 Firmware S0kB
. P yp _g P _y’ 3 Firmware + crypto 50 kB

package contains the software update and the signature. In this case 4 Large Firmware 250 kB

speed and signature size are the most important factors. In these
cases, Falcon has a large advantage over LMS and Dilithium.

When option 3 is considered, the firmware includes the cryptographic
library, the situation is more complicated. Both the signature size, but
also the flash impact of the cryptographic library must be considered.
Both of these are transferred over the network when updating the
firmware. As the size of the network transfer also impacts the duration
of the firmware update, a small difference in verification speed is
quickly dwarfed by a large increase in network transfer time due to
more flash usage. As shown in Table 3.10, when these factors are
considered, LMS presents itself as the best trade-off between flash size,
network transfer cost, verification time and stack usage.

In the case of option 4, the large network transfer costs overwhelm the
other costs, reducing the comparative advantages of one post-quantum
signature over another. From the point of view of cryptographic
maturity, LMS is the safest choice. As noted in subsection 2.6.1,
hash-based problems have received extensive cryptanalysis from the
cryptographic community, while the security of structured lattice-based
schemes like Falcon is less well-understood. Nevertheless, compared to
the pre-quantum state of the art, LMS imposes a significant increase in
signature size and running time, which has a major impact on firmware
update performance. Thus, despite its relative lack of maturity, the
performance characteristics of Falcon make it extremely tempting for
applications with smaller updates.

3.6 CHAPTER 3. COMPARATIVE EVALUATION OF DIGITAL SIGNATURES 45

3.5 DISCUSSION

3.51 COMPARISON TO PRE-QUANTUM
DIGITAL SIGNATURES

Comparing the post-quantum digital signatures currently consid-
ered, there exist a large differences with current state-of-the-art
pre-quantum digital signature schemes. When comparing the two
different categories, public key sizes and signature sizes together with
the memory requirements and running time must be considered.
Current post-quantum digital signature schemes all have larger public
key and signature sizes, generally by wel over an order of magnitude.
Comparing current elliptic-curve signature schemes, Falcon’s public
keys are 28 times larger and signatures are 10 times larger. Dilithium’s
public keys are 41 times as large as elliptic curve public keys and
signatures are 38 times larger. LMS avoids the growth in public key
sizes, with a slightly below 2 times increase in public key size, however
the signatures are 74 times larger than current elliptic curve sizes.

When considering the computational time of the post-quantum digital
signatures, the comparison is more mixed. Signature verification is
generally relative fast compared to the elliptic curve signatures on the
tested platforms. The fastest post-quantum algorithm, Falcon, requires
13 msto 16 ms on the tested platforms, where the fastest pre-quantum
signature requires between 40 ms to 60 ms. However, the fast signature
verification of Falcon comes at the cost of requiring significant flash and
moderate amount of stack for the implementation to work. Signature
generationisin general slower with post-quantum signatures compared
to the pre-quantum signatures. The fastest post-quantum algorithm
sits between 121 ms to 135 ms, which is almost 8 times slower than
Monocypher at 16 ms to 21 ms. Considering the memory requirements,
the post-quantum digital signature schemes require significantly more
flash and stack memory. Even the stack usage can grow over 11 times
compared to the pre-quantum implementations.

3.5.2 IMPACT ON REAL WORLD SCENARIOS

Considering real-world scenarios where a payload must be authenti-
cated on a constrained device, the public key must be provisioned
on the device. While considerably larger than pre-quantum algo-
rithms, all post-quantum algorithms have public key sizes that can be
accommodated on these devices.

A larger issue is the signature size of the algorithm as this has to be
transferred to the device over a constrained and lossy link. Furthermore
the signature must fit in the memory of the target device to verify it.
Depending on the exact deployment scenario in which the digital
signature is required, the extra cost of the transfer of the post-quantum
signature can be dominant compared to the actual protected payload.

3.6 CHAPTER 3. COMPARATIVE EVALUATION OF DIGITAL SIGNATURES 46

3.6 CONCLUSION

This chapter provided an experimental study of available post-quantum
digital signatures and the cost of transitioning from pre-quantum
signatures to post-quantum signatures on constrained embedded
devices. | compared the performance of standard pre-quantum
cryptography to selected post-quantum digital signatures in the
same constrained environment on three low-power loT platforms,
representative of the current landscape of 32 bit microcontrollers.
I show that it is possible indeed to upgrade from classical 128 bit
security to NIST Level 1 post-quantum security on these platforms.
However | show that, based on the measurements, both in memory
requirements and computational burden, the performance varies
significantly between algorithms and implementations. Between
implementations ROM usage can vary between 1 to 30x and processing
time can vary between 1 to 2000x.

The work here shows which future-proof digital signatures can be
used to secure network communication. These algorithms can be
used to secure firmware updates and other communication evenin a
post-quantum scenario. While practical quantum computers are not
viable yet, with the average lifetime of embedded devices around 5 to
10 years, the concern is realistic and must be protected against.

However, digital signature do not provide added value in isolation,
and exist to protect a payload. They provide the required protection
needed for authenticated communication with networked devices,
for example to provide a firmware payload. Depending on the exact
payload protected, the relative increase on the network burden can
be more or less significant. Based on this, a careful consideration is
required, as to which post-quantum algorithm puts the least burden on
the requirements for the device.

CHAPTER 4

SECURE FIRMWARE UPDATE
FRAMEWORK FOR LOW-POWER
INTERNET OF THINGS

Similar to unconstrained networked devices, the Internet of Things
requires a secure update mechanism to adjust the firmware running
on devices. In the previous chapter, cryptographic primitives for
authenticating messages are evaluated. These can be used to protect
the firmware updates against malicious actors.

Over-the-air firmware updates are an essential part of networked
embedded devices. Bugs, including vulnerabilities, in the firmware can
be resolved via firmware updates and new features can be introduced.
This makes incorporating an update mechanism in any accessible
device a fundamental requirement.

Within the heterogeneous space that is the Internet of Things, a generic
mechanism to deliver firmware updates to a large number of devices
is required. This facilitates the ability to update multiple different
devices via the same infrastructure, without the need for dedicated
logic for different device types. As different devices use different
network and communication technologies, a need exists for a transport
independent mechanism for delivering the update.

To facilitate these requirements, a manifest fully describing the
firmware update is designed. This manifest describes the steps
required to apply the update, and includes checks to validate the
applicability of the update itself.

This work is mainly based on previous work “Secure Firmware Updates
for Constrained loT Devices Using Open Standards: A Reality Check” [3].
Furthermore the work is described as open standard in A CBOR-
based Firmware Manifest Serialisation Format[124], which has been
superseded by a new version: A Concise Binary Object Representation
(CBOR)-based Serialization Format for the Software Updates for Internet
of Things (SUIT) Manifest[7]. The work here is used for the RIOT-
ML toolkit [5]. Furthermore, this work resulted into a number of
contributions to the RIOT operating system, spread over multiple pull
requests and commits listed in Table 4.1, of which a number have been
merged into the software base.

411 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR |OT 48

Table 4.1: SUIT-related contributions to RIOT

Description Pull Request
pkg: add support for libcose #8895
suit: Initial minimal CBOR-based SUIT manifest parser #10315
SUIT: provide manifest validation module #11118
nrf52: use cortexm.ld script when applicable #11127
suit: cleanup of TinyCBOR to NanoCBOR refactor #13354
suit: Remove non-standard hello handler #13385
tests/suit_v4_manifest: Add test for manifest parsing #13440
SUIT: Update to draft-ietf-v3 #13486
suit/transport/coap: Make use of exposed tree handler function #13688
SUIT: Upgrade to draft-ietf-suit-manifest-09 #14436
suit: Introduce per-component flags #15092
suit: Move policy check to before fetch #15093
SUIT: fail fetch if the image size doesn’t match expected #15094
SUIT: Introduction of a payload storage API for SUIT manifest payloads #15110
suit: Move common storage.c to module directory #15136
suit/storage/flashwrite: use riotboot_slot_offset #15306
stm32f{2,4,7}: Initial flashpage support #15420
examples/suit_update: Add compatibility with native #15994

4.1 UPDATE ARCHITECTURE

Afirmware update is a multi-step process that, given the heterogeneous
space, does not follow a fixed process. Different types of devices
have different requirements on network links and storage options.
Furthermore, different types of updates exist, not limited to firmware
and configuration. To allow for this type of flexibility, the update
process is described by a manifest, which is parsed and processed by
the target device. This manifest describes the steps required by the
device to retrieve and install the firmware update.

The overall update process follows the following steps:

1. The device is notified via a push or polling mechanism that a
new update is available for installation.

2. The manifest for the update is retrieved for processing on the
device.

3. The device verifies the authenticity of the manifest.

4. The device parses the manifest and checks whether the firmware
update is applicable to the device.

5. The new firmware is retrieved by the device based on information
from the manifest.

6. The firmware is verified and installed according to instructions in
the manifest.

7. Based on the manifest, the new firmware is invoked.

416 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR |OT 49

4.1.1 DEVICE UPDATE NOTIFICATION

The first step provides a mechanism for the device to be notified
that a new manifest is available for consumption. This requires the
device to have some network connectivity to a central repository or
orchestration server. The mechanism can be either a push-based
mechanism, actively notifying the device of the available manifest, or a
poll based mechanism. For example, for firmware updates it could be
sufficient to check only daily for updates with a central authority.

4.1.2 MANIFEST RETRIEVAL

When a new manifest is available, is must be downloaded and processed
on the device. This requires network connectivity to the device and
limited memory to store the manifest on the device for processing. A
protocol such as CoAP [147], suitable for constrained devices, can be
used here to retrieve the manifest.

4.1.3 MANIFEST AUTHENTICITY
VERIFICATION

The manifest itself is protected from malicious actors by authenticating
it via a digital signature or Message Authentication Code (MAC). This
requires the device to contain a root of trust via which to authenticate
the update. By itself the cryptographic signature only protects against
modification to a manifest. However, an old manifest can still be
submitted to a device to force it to downgrade to a vulnerable firmware.
To protect against this attack, the manifest contains a serial number
which must be incremented for every new manifest. The device is only
allowed to process a manifest if this serial number is greater than any
previously applied manifest.

4.1.4 FIRMWARE UPDATE APPLICABILITY
CHECKS

As the environment consists of multiple heterogeneous devices, not
every firmware is applicable to every device. To prevent an accidental
installation of invalid firmware, the manifest can provide a set of
checks to verify whether the firmware is applicable to the device. This
allows a device to reject a firmware when it must not be applied to the
device.

4.1.5 FIRMWARE RETRIEVAL

The manifest contains the location where the firmware can be retrieved
by the device, and a location where it must be stored on the device.
The device retrieves the firmware by itself from the location, which can
again be a CoAP-based URL.

4.2 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR |OT 50

4.1.6 FIRMWARE AUTHENTICITY
VERIFICATION

The authenticity of the firmware itself is protected via a digest contained
and protected by the manifest. This allows the device to guarantee the
integrity of the new firmware. After verification, the new firmware can
be installed by the device in the final location. Depending on the exact
architecture used by the device, the new firmware can be downloaded
directly to the installation location and wiped if the authenticity could
not be verified.

4.1.7 FIRMWARE INVOCATION

Finally, after installing the new update, it must be invoked by the
device. Usually this involves a reboot of the device to start the new
firmware. The manifest can instruct the device to invoke the new
firmware immediately after installation, or wait for a specific event or
instruction before invoking the new firmware.

While this architecture provides the option to also update the firmware
via out-of-band mechanisms and is not restricted to networked devices,
in this work the focus lies with networked devices. However it is
possible to deliver the manifest and firmware over interfaces such as
USB or RS-232 or similar mechanism.

4.2 FIRMWARE REQUIREMENTS

The steps involved to parse and apply a manifest and in turn update to
a new firmware involves a number of services and components to be
available on the device. These must be provided by the software
components handling the manifest, usually the currently running
firmware.

A network stack must be provided by the firmware to receive both
the manifest and the firmware. Firmware images are often multiple
kilobytes in size, sometimes exceeding 100 KiB. This requires a network
stack on the device capable of handling such transfers. On the
constrained device side, a protocol such a CoAP can handle this via
the block-wise transfer mechanism, using the blockl and block2
options.

The manifest itself must be parsed on the device. This involves a parser
for CBOR [43] object to parse both the manifest and the cryptographic
envelope protecting the manifest.

Furthermore, the device must be able to verify the authenticity of the
manifest. For this a root of trust and the necessary cryptographic
primitives must be available on the device to verify the digital signature
in the manifest.

The running firmware must also contain the capability to write the
received firmware to persistent storage, often the flash memory of
the device itself. When the bootloader is involved in writing the new

4.3 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR |OT 51

update to the final location, the bootloader must have this capability
instead.

Depending on the exact architecture, a bootloader must also be
present on the device. The bootloader must either install the new
firmware over the previous firmware, or boot the newest firmware from
multiple available slots. This depends on whether a single firmware
slot is used where the bootloader installs the new firmware. A second
option is to use multiple slots. In this case, the running firmware would
install the new firmware in a different slot. The bootloader then boots
the newest firmware available among the slots. In the latter case the
bootloader does not require persistent storage write capabilities.

4.3 MANIFEST DESIGN

The manifest describes the metadata involved in obtaining the payload,
the devices to which it applies, and the cryptographic information
protecting the manifest. The manifest is encoded using the CBOR data
format and is structured based on several key components elaborated
on below.

Firstis the outer wrapper structure. This contains the authentication
block, the manifest itself and a number of optional elements for
extensions. The envelope ensures that processing can be donein a
modular way without substantial complexity.

The authentication block inside the envelope contains a COSE authen-
tication block, using either a signing or MAC type COSE object. The
COSE [143] authentication blocks, consisting of either a sign or Mac
type COSE object, provide the cryptographic authentication required
for the manifest. Via this authentication container the full manifest,
and in turn the update payload, is protected against tampering by
unauthorized parties.

The manifest itself, inside the envelope container, contains the full
information for applying the update. This starts with a structure version
for indicating compatibility. The next value is a sequence number. This
sequence number ensures protection against replay attacks, where old
manifest are resubmitted to a device to force a firmware downgrade.
This sequence number must always be higher than previously decoded
manifest, ensuring protection against replay attacks.

The rest of the manifest structure, inside the envelope, contains
information on how the payload should be applied to the receiving
system. This contains the set of payloads, any dependencies, a set
of pre-installation instructions, installation instructions and post-
installation instructions. Furthermore some human readable text can
be included and a Concise Software Identification Tag can be included.

The pre-, post- and regular installation instructions consist of a number
of condition checks and directives controlling the full installation
process. The condition checks, as visible in Table 4.2, allow the
receiving device to reject the update based on these conditions. If one
of the preconditions do not succeed, the manifest is rejected. This for

Table 4.2: SUIT pre-installation
condition checks

Id Name Argument

1 Vendor Identi- UUID
fier

2 Class Identifier ~UUID

3 Device Identi- UUID
fier

4 Image Match Digest

5 Image Not Digest
Match

6 Use Before Time

7 Minimum Bat- Integer
tery

8 Update Autho- Integer
rised

9 Version Integers

10 Component Off- Integer
set

Table 4.3: SUIT pre-installation

directives
Id Name Argument
1 Wait Until Time
2 Dayof Week Day
3 Timeof Day Time
4 Battery Level Integer
5 External Power -
6 Network Discon- -

nect

4.4.1 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR [OT 52

example allows for rejecting a manifest received by the incorrect
device hardware. The directives, as shown in Table 4.3 contain more
active instructions for the device to act upon. This includes waiting for
an external event or time to happen, for example waiting for the device
to be plugged into an external power source.

The installation info contain a number of elements to help the receiving
device to retrieve and process the binary for the update. For each
payload component in the manifest to be installed on the receiving
device, this element supplies the critical information needed for that
payload. This includes the size of the payload and the location where
to retrieve the payload from. Another essential element is the digest
over the payload, which protects the payload from tampering via this
digest, which is in turn protected by the COSE element in the outer
wrapper.

Finally the post installation info contains directives and conditions
which can be used for further actions for the device after a successful
installation. For example the device can be instructed to reboot after
the manifest has been applied. The post installation conditions can be
used to verify the state of the device after the update has completed.

4.4 IMPLEMENTATION OF SECURE
FIRMWARE UPDATES

4.4.1 SCENARIO SETUP

[todo] Rework

Prior work [126] outlines requirements for firmware updates of loT
devices, and lists various common deployment scenarios. The common
scenario used here is that of a low-power IoT device as target for the
firmware update. The loT device is connected through a low-power
low-throughput wireless network to a device management server,
which runs on the internet.

The scenario assumes an loT maintainer, or firmware developer,
in charge of maintaining the firmware and of updating the device
when required. Over the lifetime of this |oT device, an authorized loT
maintainer should be able to:

1. Produce firmware updates that are integrity-protected and
authenticated;

2. Trigger the device to fetch (via push or pull) and verify the
integrity and authenticity of a firmware image, and then reboot;

3. Delegate authorization to another maintainer, in case of new
ownership or change of contracts, the same technique is used to
switch trust anchor when it expires or has to be revoked;

4. Reconfigure the device so that cryptographic algorithms can be
upgraded, if needed.

There are several aspects not explored in the prototype:

4.4.2.0 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR [OT 53

« Only the case where the entire firmware is replaced is considered,
differential updates are out of scope

+ The focus is on the use of asymmetric cryptography for digital
signatures, even though a symmetric key solution is also possible.

« Firmware encryption is not supported.

« Proprietary protocols are avoided, the focus is on open source
software and open protocols. Therefore, the optimization
potential is not explored. The results should therefore be
interpreted as representing the ”lower bar”.

The prototype is designed such that multiple configurations are
possible. For example, to switch crypto algorithms, crypto libraries,
and network stacks. This code can be executed on loT hardware from
different vendors. This provides with a good basis for comparing
different features.

4.4.2 COMPONENTS AND FUNCTIONAL
OVERVIEW

The prototype utilizes the following building blocks:
+ The firmware metadata format based on the IETF SUIT manifest.
« The 6LOWPAN, IPv6, and CoAP transport stack present in RIOT.
+ The LwM2M loT device management solution.

+ Digital signature algorithms based on Ed25519 and ECDSA
P-256r1.

The RIOT operating system is used for this prototype, but the results
can be transferred to other real-time operating systems. Within RIOT,
both the build system and the code have been adapted to incorporate
the prototype. The remainder of this section provides a functional
overview of the prototype.

IOT DEVICE COMMISSIONING

From the embedded software point of view, the prototype firmware Firmware Image 2
layout is based on the design shown in Figure 4.1. The flash layout
consists of:

Metadata

1. Aminimalistic bootloader, invoking the newest firmware between
the two slots.

2. Two firmware image slots in flash memory, each prefixed with

-) Firmware Image 1
space for their respective metadata structures.

3. Abasic firmware update module, also implemented on top of Vetadata)
RIOT, integrated into each firmware image. Metadata

The RIOT build system is extended to enable a maintainer to simultane- Bootloader
ously build and flash (through the serial or USB port) the bootloader
and the initial firmware in the first slot. The initial firmware includes a

Figure 4.1: Microcontroller flash
memory layout

4.4.2.0 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR |OT 54

software module for firmware updates, configured with the necessary
trust anchor of the maintainer.

TRUST ANCHOR

Our model is based on a single trust anchor, namely of the authorized
maintainer. This trust anchor is used to verify the authenticity of the
signed firmware image. If an attacker manages to trick the maintainer
into handing out the private key associated with the trust anchor, the
attacker can load malicious firmware images onto the IoT device. An
attacker could make the compromised maintainer sign malicious
firmware images. Alternatively, the compromised maintainer could
relinquish authorization to the attacker. There is no mitigation when
the only trust anchor used is compromised. This prototype relies on
the maintainers’ ability to keep their private keys secure. Extensions
using a full public key infrastructure, potentially with a hierarchy of
keys, is possible but out of scope for this prototype.

PRODUCING AND UPLOADING AN AUTHORIZED
FIRMWARE UPDATE

The existing build system of RIOT is extended so that a maintainer, a
software developer, can simultaneously build a new firmware image
and produce the corresponding metadata, signed with the private key
of the maintainer. The firmware and signed metadata can then be up
loaded to the IoT software update server, using an HTTP-based API.
The update server is a web server, which can speak both HTTP and
CoAP. It interfaces with the maintainer of the firmware and with the
loT device.

FIRMWARE UPDATE MODULE

The firmware update module’s main tasks are to retrieve the firmware
image and manifest from the update server, to parse and verify the
manifests, and to store the firmware image on flash memory. The
module implements the required buffering between the network
packet size and the device flash page size. When a flash page buffer
is full, the module writes the buffer to the next flash page in the
(non-active) firmware image slot. After the entire firmware image
has been written to flash, the module computes a hash and checks
that this hash is identical to the hash announced in the transferred
firmware’s metadata. The received metadata is cryptographically
verified with the help of the trust anchor (the public key stored on the
device). If the digital signature is verified, and if other security checks
pass (for example, the firmware sequence number is confirmed to be
newer), the module also writes the metadata to the flash (otherwise,
the metadata is blanked) and launches a reboot. The bootloader
then reads the metadata from the two available firmware slots and
chooses to boot the newest valid firmware, based on the metadata.
Note that, due to blanked metadata, an interruption (e.g. due to power
loss) cannot cause the system to boot of an invalid, corrupted or
incompletely received image.

451 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR |OT 55

SCHEDULING FIRMWARE UPDATES

Using the firmware update module, updates can be (i) either triggered
periodically or on demand, (ii) pushed to the device or pulled from
the device [63], so as to fit other operational constraints. On the
device the real-time, preemptive multi-threading capabilities of RIOT
is used, such that the system is not blocked by the computational-
intensive task of digital signature verification. In practice, signature
validation runs in a separate thread, with low priority, enabling other
threads with top priority to execute as needed. However, note that
advanced fine tuning is not done for the schedule of firmware updates
(e.g. to guarantee the continuity of some service provided by the
device, or to optimize network load). Instead, the focus is primarily on
the fundamental embedded system characteristics and constraints
imposed by standard-compliant firmware update on-board constrained
loT devices.

LIFECYCLE MANAGEMENT

By changing the trust anchor stored in the next firmware’s update
module, authorization to update the firmware can be delegated to
another maintainer, who can take over the production and the roll out
of authorized updates.

Crypto agility is straightforward because the update module in the new
firmware image can implement and use upgraded cryptographic
primitives. This flexibility is provided because the cryptographic
primitives are implemented fully in the firmware.

Key roll-over is also made possible with the ability to update the trust
anchor.

4.5 CONFIGURABILITY OF THE
PROTOTYPE

The prototype designed can be configured in multiple ways, as
summarized in Table 4.4,

Firmware IPv6 Standardized Device

Update Support Manifest Mgmt
Baseline X v X x
Basic-OTA v x X X
IPv6-OTA v N4 X X
SUIT-OTA v v4 v X
LwM2M-OTA v v v v

Table 4.4: Analyzed Configurations.

The following configurations have been created:

4.5.1 BASELINE

The Baseline configuration covers a typical sensor scenario, and is
introduced here only as a reference, to evaluate the relative cost

4.54 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR |OT 56

of over-the-air (over-the-air (OTA)) firmware updates. Therefore,
this configuration does not provide firmware update functionality.
The Baseline configuration uses 6LoWPAN over IEEE 802.15.4 as a
network stack. A CoAP server is installed on the loT device to respond
to requests for sensor data and to actions that trigger an actuator.

4.5.2 BASIC-OTA

This configuration enables over-the-air firmware updates pushed
directly from the update server to the IoT device, over the Media Access
Control (MAC) layer, without a standard network layer. Therefore, this
Basic-OTA configuration requires that the IoT device and the update
server can communicate directly over the MAC layer. In other words,
they have to be on the same local network or bus. The Basic-OTA
configuration uses minimalistic firmware metadata in a proprietary
format, namely:

« Asequence number.
« The firmware start address and size.
+ Adigest of the firmware image.

+ Adigital signature of the metadata.

4.5.3 IPV6-OTA

This configuration enables the Basic-OTA configuration by using an
IPv6-compliant network stack. The IPv6 network layer implementation
is provided by the RIOT Generic (GNRC) network stack. COAP block-wise
transfer (block1) is used because UDP limits the size of the firmware
image to be transferred to 65.507 bytes and, more importantly, to
avoid the inefficiency caused by IP fragmentation.

4.5.4 SUIT-OTA

This configuration implements firmware updates following the IETF
SUIT manifest [124]. Compared to IPv6-OTA and Basic-OTA, SUIT-
compliant firmware metadata offers more features and additional
security guarantees (see section 4.9).

The SUIT manifests used in our prototype contain the following
information:

« The firmware version number.
+ An 8-byte nonce.

« Amonotonic sequence number, for which a Unix time stamp is
used.

+ Asingle condition: limiting the validity of the manifest to our
device.

o The format of the firmware.

o The size of firmware.

4.7 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR |OT 57

+ Astorage identifier.

+ Asingle URI to allow the device to download the firmware.
« ASHA256 digest.

+ Adigital signature on the manifest.

Upon receiving a manifest, the loT device checks the signature, and, if
verified correctly, pulls the firmware from the URI indicated in the SUIT
manifest. To pull the firmware image, again CoAP block-wise transfer
(CoAP blockz2 option) are used. It would be possible to attach the
firmware to the manifest, but using this two-step approach gives us
extra flexibility.

4.5.5 LWM2M-0OTA

This configuration adds support for LwM2M v1.0, without the use of
the bootstrapping functionality. The device registers to a LwM2M
server and provides the necessary APl endpoints complying with
the LwM2M specification and the core objects, such as the LwM2M
Device and the LwM2M Firmware Update objects. The firmware
is updated by pushing a SUIT manifest to the Package resource found
inthe LwM2M Firmware Update object followed by the workflow
corresponding to the SUIT-OTA configuration.

In the analyzed configurations above, TLS/DTLS was not used between
the loT device and the update server or device management server for
LwM2M. Implementing TLS/DTLS is certainly useful when considering
the larger device management functionality in addition to the firmware
update. An analysis of [oT device management functionality is, however,
outside the scope of this chapter.

4.6 PERFORMANCE EVALUATION

For the evaluation, commercially available hardware based on Arm
Cortex M microcontrollers is used. The following hardware from three
different vendors is used:

« Atmel SAMR21, which features a Cortex MO+ MCU with 32 kB of
RAM and 256 kB of flash.

o STM32F103REY, which features a Cortex M3 MCU with 64 kB of
RAM and 512 kB of flash.

« Nordic nRF52840, which features a Cortex M4 with 256 kB of RAM
and 1 MB of flash.

The STM32F103REY and the nRF52840 are clocked at 64 MHz, while the
SAMR21 runs at 48 MHz. In the following measurements, the code is
compiled using GCC 7.2.0 for Arm optimized for code size.

To evaluate cost in this comparative evaluation, the memory required,
both flash and RAM, and the CPU performance is measured. These
metrics are decisive in terms of hardware costs and in terms of energy
costs [59] on these constrained devices.

4.7 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR |OT 58

Component Bootloader Baseline Basic-OTA IPv6-OTA SUIT-OTA LwM2M-OTA
Core 2760 13976 10913 13241 14388 14175
Network 0 26 892 2732 26 892 27230 27208
CoAP 0 1876 1910 1910 2286 2676
Crypto 0 308 5798 5886 6472 6472
COSE & CBOR 0 0 0 0 3181 3181
SUIT 0 0 0 0 1575 1551
OTA 0 0 2007 2007 3998 3475
LwM2M 0 0 0 0 0 2166
Sub-total perimage 2760 43052 23360 49936 59130 60904
Total flash footprint 2760 43052 49544 102696 121084 124632

Table 4.5: Flash requirements, in bytes, per component and configuration, on Cortex MO+.

Component Bootloader Baseline Basic-OTA IPv6-OTA SUIT-OTA LwM2M-OTA
Core 800 2410 1317 2410 3914 3919
Network 0 11010 7224 11010 11010 11026
CoAP 0 1536 2560 2560 1024 1024
Crypto 0 28 28 28 60 60
COSE + CBOR 0 0 0 0 512 512
SUIT 0 0 0 0 296 272
OTA 0 0 632 632 2984 3000
LwM2M 0 0 0 0 0 1487
Total 800 14984 11760 16 640 19800 21300

Table 4.6: RAM requirements for bytes of statically allocated stack, per component and configuration, on Cortex MO+.

4.7 RELATIVE IMPACT OF
CRYPTOGRAPHIC LIBRARIES

In constrained embedded devices, the use of cryptography significantly
impacts memory and power budgets. To get an idea of the significance
of the impact, both the relative memory budget and time spent due to
crypto for the Basic-OTA configuration of the prototype is measured,
while using the HACL crypto library [177]. First, the time spent on
different tasks is shown in Figure 4.2. The bulk of the time and thus
energy is spent on signature verification and network transport. The
rest of the time is spent on the parsing of the network packets, firmware
metadata parsing and validation, this time and energy is negligible (less
than 2 %) when compared to the signature verification and network
transport. Note that this remains true with other configurations of our
prototype as well, using a more elaborate network stack (CoAP) or
more elaborate metadata (SUIT). Next, it is observed in Figure 4.3
that cryptographic functions represents 50 % of the memory budget.
Going back to Figure 4.2, it seems at first sight that time spent during a
firmware update is dominated by network transfer with 60 %, then
signature verification with 38 %. However, observe that, since half of
the firmware image size is contributed by cryptographic functions, this
means 30 % of the time is spent on transferring updated cryptographic

4.81 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR |OT 59

functions inside the firmware over the network, half the total network
transfer time. In effect, the conclusion is that handling cryptography
dominates, accounting in fact for 68 % of the total time spent on the
firmware update process. | conclude that choosing an appropriate
cryptographic algorithms and library, offering a good compromise on
code size and verification speed, is crucial. In the following section,
this topic is discussed in greater detail.

4.8 EVALUATING THE COST OF THE
OTAUPDATE FUNCTIONALITY

To evaluate the cost of the firmware update functionality, the RAM and
flash memory overhead incurred by this functionality is measured and
compared in the prototype for the various configurations defined in
section 4.5. The flash memory footprints (total and broken down
per component) are shown in Table 4.5, while Table 4.6 shows the
RAM requirements calculated for the stack measured on an Atmel
SAMR21 (using a Cortex MO+, the most constrained microcontroller
used in these experiments). In these two tables the bootloader is
listed separately as it is present on the device alongside as shown in
Figure 4.1.

The different components of the system are distinguished as follows:

+ The core component combines the minimal basic operating sys-
tem functionality, including drivers. The newlib-nano standard C
library is also included.

+ The crypto component includes cryptographic algorithms, such
as digest algorithms, the digital signature algorithm, the elliptic
curve cryptography and big number library together with the
pseudo random number generators.

« The network component includes the protocol stack from the
radio driver up to the transport layer protocol UDP.

+ The modules that enable a firmware update to be received and
stored in flash memory are combined in the OTA component.

+ CoAP refers to the CoAP protocol stack.

COSE+CBOR contains the libraries for COSE parsing and CBOR
parsing.

SUIT relates to the code parsing a SUIT manifest.

Finally, LwM2M contains the code for device registration, and func-
tionality required for the LwM2M protocol to perform firmware
updates (particularly the LwM2M Device and Firmware Update
objects).

4.8.1 THECOST OF OTA

The cost of basic OTA functionality can be measured by comparing the
memory requirements of the Baseline configuration with that of the

Network transfer

..
Misc

™~

Signature verification

Figure 4.2: Time spent per subtask in a
firmware update.

3npowvio

6%

Figure 4.3: Flash memory budget
per system component. Basic-OTA
configuration, 35kB flash in total.

482 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR [OT 60

IPv6-OTA configuration. On a per-image basis, the flash overhead
comes from the need for additional modules to perform necessary
crypto (5 kB) and to handle OTA (2 kB). However, the prototype needs
two image slots with metadata and a bootloader. Therefor, the
comparison is with the Baseline flash footprint against twice the
flash footprint of IPv6-OTA added with the bootloader footprint (see
Table 4.5). In total, the relative overhead in flash memory footprint
is 137 %, 59 kB more. Note that this overhead means that the flash
memory budget crosses over from below 64 kB to below 128 kB. The
largest part of the overhead comes from the doubled image slots. The
footprint of the rest (bootloader and metadata) is small: approximately
3 kB of flash for the bootloader and a single flash page for the metadata
of each image.

4.8.2 THECOST OF STANDARDS
COMPLIANCE FOR OTA

The use of standards-compliant specifications, such as SUIT and
LwM2M, increases the memory footprint due to the extra functionality
provided. Where the BASIC-OTA scenario used a firmware OTA mecha-
nism optimized for the scenario, using standards-compliant update
mechanisms add extra capabilities not leveraged by the scenario. For
example, serialization, metadata processing, and object handling all
add extra processing and memory overhead. This is expected.

Observe that the relative overhead per image, compared to the Baseline
scenario, is small. This is because a lot of features present in the
firmware are reused within the network module of each configuration.
Furthermore, it is not unlikely that, OTA functionality aside, applica-
tion code already leverages CBOR, COSE, and other cryptographic
functionality. In such cases, the extra memory overhead per image falls
to approximately 10 %. This type of software reuse is a clear advantage
of using building blocks leveraging existing standards.

Compared to the 124 B of metadata transferred over the network with
the Basic-OTA configuration, 226 B of metadata need to be transferred
with the SUIT-OTA configuration (counting full COSE data).

Due to the flash memory alignment constraints on the loT device, this
overhead has no effect on the flash memory footprint, because 226
bytes typically fit on a single flash page. For example, 256 bytes fit
on a single flash page on the Atmel SAMR21, the most constrained
microcontroller used in the measurements.

Extending our measurements to the SUIT manifest case, the code has
to be extended with components required by the SUIT specification.
A SUIT module and the necessary serialization and cryptographic
functions increase the flash size by 10 KB compared to the simple OTA
scenario. While the COSE and the CBOR modaules are here specifically
required for SUIT compliance, in a real-world scenario these modules
could also be used for sensor data encoding and application data
encryption.

Using LwM2M compatible handlers for this increases the flash size by

491 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR |OT 61

another 2 kB because of the need to implement the mandatory LwM2M
handlers and the registration protocol. These components must be
implemented by every device that is LwM2M-compliant and should
not be considered as overhead purely related to having over-the-air
update functionality.

Finally, observe that none of the configurations experimented with
exceeds the thresholds of 32 kB of RAM and 128 kB of flash memory.
Although our prototype could be further optimized, it fits the nature of
constrained loT devices used in the market today.

4.9 SECURITY ASSESSMENT

Typical threats against a firmware update solution are discussed in
the SUIT information model [125] and can be categorized into the
following list:

« Tampered firmware

« Firmware replay attack

+ Offline device attack

+ Device firmware mismatch

« Firmware installation flash memory location mismatch
+ Unexpected precursor firmware image

+ Reverse engineering of the firmware

+ Device resource exhaustion

Based on these threats, | assess and compare the security of our
prototype in the IPv6-OTA, SUIT-OTA, and LwM2M-OTA configurations,
which are defined in section 4.5. The summary of our assessment is
shown in Table 4.7.

IPv6- SUIT- LwM2M-
OTA OTA OTA

Tampered firmware
Firmware replay

Offline device

Firmware mismatch
Wrong memory location
Unexpected precursor
Reverse engineering
Resource exhaustion

Table 4.7: Security Assessment
Summary for different configurations.
The v'shows which threat vectors are
protected against by the different
configurations.

X X X <X X <<
NN N N
S IENENENENENEN

4.9.1 FIRMWARE TAMPERING

An attacker may try to update the loT device with a modified and
intentionally flawed firmware image. All configurations are protected
by digital signatures against this attack vector. To counter this threat,
the IPv6-OTA, SUIT-OTA, and LwM2M-OTA configurations use digital

4.9.5 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR |OT 62

signatures to ensure integrity of both the firmware and its metadata.
Additionally, the device can verify that an authorized maintainer signed
the firmware image via this signature.

4.9.2 FIRMWARE REPLAY

An attacker may try to replay a valid, but old firmware with known
vulnerabilities. This threat is mitigated by using a sequence number
inside the manifest, where devices reject the update when the sequence
number is not higher than any previously seen valid manifests. All
three configurations use such a sequence number, which protects
them against this attack vector.

4.9.3 OFFLINEDEVICE ATTACK

An attacker may cut communication between the |oT device and the
update server for an extended period of time. Then, they may try to
update the loT device with a (known-to-be-flawed) firmware image,
which has in the meanwhile been deprecated. IPv6-OTA does not
provide any mitigation against this threat.

Following the SUIT specification, a best-before time stamp can
be used to expire an update. However, this requires the loT device
to have an approximate knowledge of the current date and time,
which may not be available on constrained |oT devices. Therefore,
our SUIT-OTA configuration does not mitigate this threat either. Only
the LwM2M-OTA configuration may protect against this attack since
LwM2M offers an integrated way to provision the device with date and
time information.

4.9.4 DEVICE FIRMWARE MISMATCH

An attacker may try replaying a firmware update that is authentic, but
for an incompatible device. The IPv6-OTA configuration does not
provide mitigation against this threat, the configuration does not have
a device-specific identifier in the protocol. The SUIT-OTA and the
LwM2M-OTA configurations include device-specific conditions in the
manifest. These conditions can be verified before installing a firmware
image, thereby preventing the device from installing and invoking an
incompatible firmware image.

4.9.5 FLASHMEMORY LOCATION
MISMATCH

An attacker may attempt to trick the loT device into flashing the new
firmware to the wrong location in memory. To mitigate this attack,
IPv6-OTA, SUIT-OTA, and LwM2M-OTA specify the intended memory
location of the firmware update. The simple update mechanism
with IPv6-OTA contains a firmware address which states the location
where the firmware has to be installed. The SUIT manifest contains an
opaque string to specify the location. Both these mechanisms suitably
prevents a firmware from being installed in the wrong location. This
way the device can verify that an update is installed in the correct

4.9.8 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR |OT 63

location, preventing mismatches between the firmware location and
the expected location of the new firmware.

4.9.6 UNEXPECTED PRECURSOR IMAGE

When using an incremental update scheme, where there is a tight
coupling between the installed firmware version and the firmware
version from the update, a match between the two versions is essential.
An attacker may try to exploit a vulnerability that results from a
mismatch between previously installed firmware and the new firmware.
While the prototype only uses full firmware images, extending it to
incremental updates is possible. While IPv6-OTA does not mitigate this
threat, SUIT-OTA and LwM2M-OTA enable specifying the precursor
software that must be installed before the update can be applied,
enabling modular or incremental updates. The simple firmware update
scenario doesn’t support a precursor image, it must not be used with
incremental updates to prevent this vulnerability from being abused.

4.9.7 FIRMWARE REVERSE ENGINEERING

The firmware image in transmission can be captured by an attacker for
vulnerability analysis. Neither the IPv6-OTA configuration nor our
SUIT-OTA configuration protect against eavesdropping end-to-end,
from the maintainer to the loT device. Note that the SUIT specification
also defines the ability to encrypt the firmware image [164]; however,
the prototype here does not make use of this feature. The use of (D)TLS
in the SUIT-OTA or LwM2M-OTA configurations can also protect the
firmware image against eavesdropping in-flight, while transmitted over
the network, but doesn’t offer end-to-end security without the extra
protection offered by using SUIT.

4.9.8 RESOURCE EXHAUSTION

Receiving, verifying, and storing a new firmware is an operation that
typically uses up a significant amount of resources on a constrained
loT device. As discussed in chapter 3, signature verification, both pre-
and post-quantum, can take several seconds depending on the library
used. By repeatedly attempting fraudulent firmware updates, an
attacker may deplete the device’s battery or, more generally, make it
unavailable for long periods of time. For example, an attacker who
manages to transmit valid manifests without a valid signature to an loT
device at regular intervals can drain the battery.

The IPv6-OTA configuration does not mitigate this threat, but the
SUIT-OTA configuration lowers the impact by verifying the manifest
before downloading the firmware image. However, an attacker could
still push invalid manifests at any rate, causing the loT device to
perform signature verifications. Using LwM2M, an additional layer of
defense can be added by only processing manifests that are conveyed
via the device management infrastructure. In this way, the loT device
trusts the LwM2M server to only forward manifests that pass the
following security checks:

4.10.4 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR |[OT 64

« The URL in the manifest points to a firmware update server
under the control of the LwM2M infrastructure.

+ The manifest signature has been verified correctly.

« Other conditions in the manifest (such as the best-before time
stamp) have been processed successfully.

If the device management server is compromised, the security charac-
teristics of the LwM2M-OTA configuration fall back to those of the
SUIT-OTA configuration.

4.10 DISCUSSION

4.10.1 MAKING THE FIRMWARE UPDATE
RELIABLE IS KEY

With the system described, the maintainer is expected to test the
new firmware properly before rolling it out. At a minimum, the new
firmware must be able to update itself one more time over-the-air.
Guarantees beyond this minimum requirement, such as the use of
watchdog timers and the ability to use a “factory reset”, fall into the
realm of traditional embedded software management and increase the
flash memory requirements. Without taking these considerations into
account, failures, like those reported with the Taiwanese YouBike
service [99] and the Japanese X-ray telescope satellite Hitomi [119], are
likely to occur again.

4.10.2 USE DELEGATION CAPABILITIES
WITH CARE

As the system allows the maintainer to transfer its authority to another
entity, the maintainer is entrusted with the responsibility of not
transferring authority to malicious entities. If the maintainer is the
owner of the device, trust is not an issue; otherwise, maintenance of
loT software is typically of a contractual nature, and the caveats of
such trust are well-trodden territory. An improvement of the system
could use protected memory and/or a dedicated crypto hardware
module to validate authority transfer.

4.10.3 SHIELDING AGAINST RESOURCE
EXHAUSTION AND BEST-BEFORE
VULNERABILITIES

The extent to which an loT device is protected against resource
exhaustion attacks depends on the resources of the firmware update
server in the LwM2M-OTA configuration. The aspect of dimensioning
the server’s resources to counter potential DoS attacks is covered by
extensive prior work in the domain. In the end, due to extreme lack in
resources, constrained IoT devices remain intrinsically vulnerable.

411 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR |OT 65

4.10.4 REAL-WORLD REQUIREMENTS MAKE
FIRMWARE UPDATES COMPLEX

In this chapter the focus of the efforts on the most basic scenario
outlined in [126] and refinements were not considered. Examples of
such refinements are: firmware encryption, updating devices with
multiple microcontrollers, complications due to policy handling,
differential updates, or more efficient distribution using multicast.
Encryption, for example, raises the question about key management.
In a world where software components are developed, maintained, and
updated by different developers, additional challenges arise. While the
advantages are known from web development, there are questions
about how to trace component versions and their composability with
other software libraries, how to sandbox components in constrained
loT devices, how to accomplish faster time to market in regulated
industries where software development requirements and testing are
much harder than on the internet, and so on.

4.10.5 IOT SOFTWARE UPDATES ARE NOT
JUST FOR CRITICAL
INFRASTRUCTURE

Interdependence between networks has dramatically increased over
the past few decades. Enabling and securing firmware updates is
necessary for all IoT devices. Both those that are inside the infras-
tructure perimeter, for example, industrial sensors, and outside the
infrastructure perimeter, such as consumer smart appliances. For
instance, a recent study [154] shows how the power grid is indirectly
vulnerable to DDoS attacks from hacked consumer appliancesin
smart homes. Using simulations, the study shows how a botnet
controlling a relatively small number of connected water heaters and
air conditioners could maliciously disrupt power demand and take
down most of a large power grid serving an area as large as Canada,
affecting tens of millions of people.

4.11 CONCLUSION

In this chapter, open standards have been surveyed, which provide
generic building blocks for secure firmware updates on constrained loT
devices. | build a basic prototype, bundling such standard building
blocks and avoiding proprietary components as much as possible.
With this the security characteristics of the resulting system have been
assessed, and show how it brings state-of-the-art security to |oT devices.
The cost of enabling the firmware update solution in our prototype is
bearable, in terms of the required memory and computation, with the
currently available IoT hardware. | demonstrate that it is possible to
implement a generic, standards-compliant firmware update solution
on loT devices without exceeding the typical thresholds of 32 KiB of
RAM and 128 KiB of flash memory.

Including a firmware update mechanism in loT devices is a must-have
security measure against future vulnerabilities. The need to secure

411 CHAPTER 4. SECURE FIRMWARE UPDATE FRAMEWORK FOR |OT 66

constrained devices in the field exacerbates this need. However the
mechanism to update firmware through SUIT can be leveraged for
other payloads beyond firmware files. Compartmentalization of
firmware through virtualisation can help reduce the update size when
only the affected module requires updates.

The ability granted by the SUIT manifest to instruct a device to retrieve
and install a payload is not limited to firmware. While the reasons to
enable firmware updates are numerous, the ability to update any
payload on the device such as individual modules and off-chip code
can be leveraged in multiple ways.

One such way is to use SUIT to update the application running inside
small VMs. In this scenario the SUIT manifest specifies where the
application code of the VM must be retrieved from and where it should
be installed to. One such VM is rBPF presented in chapter 5.

CHAPTER 5

RBPF A TINY SOF TWARE-ONLY

67

VIRTUAL MACHINE FOR INTERNET OF

THINGS FIRMWARE

In the previous chapter, this thesis has presented mechanisms resolving
firmware vulnerability via secure over-the-air updates. This allows for
resolving existing vulnerabilities when discovered. However, this
assumes vulnerabilities are found, and it does not protect against
undiscovered and unpatched vulnerabilities.

Smallvirtual machines hosted on embedded devices can act as sandbox
for the device, to isolate and reconfigure part of the application code.
These can be configured to be isolated from the main microcontroller
by default, preventing them from interfering with the firmware on the
device.

While a number of virtual machines specifically for embedded systems
already exist, none of these are promising in terms of memory footprint.
Usually these virtual machines require multiple tens of kilobytes of flash
memory and significant RAM to operate, making them cumbersome to
add to existing firmware.

In this chapter, a VM, rBPF, is introduced as tiny software-only VM to
isolate software components inside. With rBPF, two use cases are
considered:

+ Isolating high-level business logic, updatable on demand re-
motely over the low-power network. This type of logic is rather
long-lived, and has loose (non-real-time) timing requirements.

+ Isolating debug/monitoring code snippets at low-level, inserted
and removed on-demand, remotely, over the network. Compara-
tively, this type of logic is short-lived and exhibits stricter timing
requirements.

The content in this chapter is published as “Minimal Virtual Machines
on loT Microcontrollers: The Case of Berkeley Packet Filters with
rBPF” [1] in PEMWN 2020 - 9th IFIP/IEEE International Conference on
Performance Evaluation and Modeling in Wired and Wireless Networks.
Furthermore, the rBPF VM has been submitted to the RIOT operating
system for inclusion in a pull request [12].

5.2 CHAPTER 5. RBPF: A TINY SOFTWARE-ONLY VIRTUAL MACHINE FOR |OT 68

5.1 DESIGN GOALS &
REQUIREMENTS

For the rBPF VM designed in this work, a number of design goals are
set. These goals are to ensure that rBPF is a proper fit for the use case.

51.1 MINIMALMEMORY FOOTPRINT

rBPF must require a minimal memory footprint. Small microcontrollers
are already constrained on resources by their design. Still a regular
firmware with full capabilities for the design goals of the particular
embedded system must be programmed on the device. Given that
running rBPF is not the main purpose of the system, it must not take up
unreasonable amount of memory on the system, but leave the bulk of
the resources to the main application and firmware running.

5.1.2 NORELIANCE ON
HARDWARE-SPECIFIC MECHANISM
FORMEMORY PROTECTION

Multiple types of hardware memory protection systems are available
on current generation microcontrollers. However, whether these are
available on a given microcontroller depends on the model and the
manufacturer. The design of rBPF is such that no assumptions are made
on the availability of these kind of hardware-specific mechanisms.
Instead software-based memory protection is used where memory
protection is based on policies loaded into the VM on execution.

513 TOLERABLE CODE EXECUTION SLUMP

Any interpreter is bound to be slower than native instruction execution.
Even more so when the interpreter must cover the security aspects
involved in protecting the host system. The rBPF VM is no exception
on this. While a code execution slump is expected and rBPF is not
designed for fast execution, the slow down incurred must be tolerable
for executing small applications in limited time.

5.1.4 SMALLAPPLICATION CODE SIZE

The applications loaded into the VM are likely to be transferred over-the-
air to the system running. These applications are updated occasionally
and thus must not incur a significant burden on the rest of the network
around the system. In turn this means that the application size
overhead must not be too large. As such, formats such as executable
and linkable format (ELF) contain more information than strictly
needed and would incur significant overhead on the transfer. Instead
the binaries to be loaded in rBPF must be lean and not incur significant
overhead.

521 CHAPTER 5. RBPF: A TINY SOFTWARE-ONLY VIRTUAL MACHINE FOR IOT 69

52 VIRTUALMACHINE DESIGN

The rBPF VM is a variant of the Linux eBPF VM, designed to execute
eBPF instructions as emitted by a compiler. The main difference lies in
the bindings provided to the operating system and the events by which
execution is triggered. An overview of how the VM is integrated into
RIOT is shown in Figure 5.1. The VM runs as a regular thread inside
the operating system, restricted by the scheduler to the configured
run priority. Within the rBPF VM, the sandboxed application is only
guaranteed to have access to a persistent key-value store. Further
integration with the operating system is available through bindings,
including access to facilities relevant to IoT applications such as sensor
values and CoAP packet creation.

5.2.1 EXECUTION HOOKS

The VM execution is geared towards short lived and event triggered
applications. Execution is triggered by events in the operating system
when an application is added to the respective event hook. These
hooks are added to specific conditions inside the operating system
such as network packet reception. The application running inside the
VM is expected to be short-lived, updating an intermediate result or
formatting a response to a request. The VM does not interfere with
real-time thread execution on the operating system. However, the VM
itself is not suitable for running hard real-time applications, as this is
not part of the design requirements.

s

Script
fetch

Application Store

Application Store
: \ bpf_execute()

hook(firewall) hook(coap)

ﬁ_' Network Stack |<—— | CoAP Stack

Radio

Figure 5.1: Integration & sandboxed
execution of rBPF VM in host OS.

As shown in Figure 5.1, multiple sources can trigger the execution
of a script. This includes requests received on the CoAP server or
packets passing through the network stack. Each event can trigger a
different rBPF application from the application store, configured by the
administrator. Similar to eBPF the VM supports both an argument
passed to the application and a return code from the application
back to the calling event. This can be used to communicate vital

5.2.2.0

63 31 15 11 7 0
Immediate

Host Program E
memory | Fetch &lDecode |<— counter E
Branch E
Script ALU |
| Check !
E_ "7 | Registers E
bpf : |
AN Stack i
e rBPF Sandbox |

execution context with the VM and pass a return value back to the
initiator. With these capabilities the VM application is isolated from the
operating system, while retaining enough flexibility to host business
logic applications, or simple measure and debug applications.

5.2.2 ARCHITECTURE

The VM is based on a simple loop design, iterating over the application
instructions as shown in Figure 5.3. The interaction between the
instructions, the sandbox guards in place, and the host address space
is shown. Both the registers and the application stack reside in the RAM
of the host.

To prevent some overhead during the execution of the loaded applica-
tions, safety checks are performed before execution where possible.
Every instruction is checked for validity of the opcode, the supplied
registers, and where applicable the jump offset of branch instructions.
This is designed as a single scan pass over the instructions of the
loaded application.

INSTRUCTION SET

The eBPF applications used directly by rBPF consist of sequences of
64-bit instructions. Each eBPF instruction consist of an opcode, source
and destination registers, an offset and an immediate bit field as
shown in Figure 5.2. Not all instructions use all bit fields, and unused
fields must be zeroed.

CHAPTER 5: RBPF: A TINY SOFTWARE-ONLY VIRTUAL MACHINE FOR |OT 70

offset . . .
Figure 5.2: eBPF instruction format

Figure 5.3: rBPF execution and
memory architecture

Table 5.1: rBPF arithmetic instructions

Opcode Pseudocode
0Ox07 dst += imm
ox0f dst += src
Ox17 dst -= imm
Ox1f dst -= src
0x27 dst x= dimm
oOx2f dst x= src
0x37 dst /= imm
Ox3f dst /= src
Ox47 dst |= imm
ox4f dst |= src
Ox57 dst &= imm
Ox5f dst &= src
0x67 dst <<= imm
ox6f dst <<= src
OX77 dst >>= imm (logical)
ox7f dst >>= src(logical)
Ox87 dst = -dst
0x97 dst %= imm
ox9f dst %= src
Oxa7 dst A= dimm
Oxaf dst "= src
Oxb7 dst = imm
Oxbf dst = src
Oxc7 dst >>= dimm (arithm)
Oxcf dst >>= src (arithm)

523 CHAPTER 5. RBPF: A TINY SOFTWARE-ONLY VIRTUAL MACHINE FOR |OT 71

For the load and store type instructions, the opcode field is structured
along Figure 5.4. The opcode class subfield specifies a load or
store instruction. The s1ze specifies the number of bits operated on,
allowing for 8 bit to 64 bit for load and store instructions. Finally the
mode field specifies the type of load instruction. While different modes
of load instructions might be developed at some point, rBPF only
implements memory loads and stores, th mode field is always set to
0x3.

The load and store instructions available in rBPF are shown in Table 5.2.
Instruction 0x18 follows a slightly different pattern. This instruction
uses the size of two instructions to combine the two 32 bit immediate
values into a single 64 bit value, which is loaded into the dst register.
The second instruction used for its immediate has all other fields of the
instruction zeroed out.

Jump instructions also have their own sub format in the opcode
encoded as shown in Figure 5.5. The compare operation is encoded in
the op field. The IMM field is cleared when the comparison is against
the immed-ate of the instruction, if it is set the comparison is between
the SRC and the DST registers.

2.3 MEMORY PROTECTION |~ (R

Depending on the instruction to be executed, different protection Figure 5.4: eBPF load and store
instruction opcode format

mechanisms are activated. Two main protection mechanisms are in 7 6 5 4 3 2 1 0
place to isolate the code executed in the VM. One protects against _
illegal load and store instructions, the other prevents code execution

outside the loaded application.

Figure 5.5: eBPF jump and branch

First the host address space is isolated from the sandbox by policies instruction opcode format

loaded in the VM, there is no memory translation to the address space
as visible from within the VM. Access to the address space is guarded
via software memory protection built into the VM. Every memory
access, including stack reads and writes, are subjected to access
policy rules. Different address space sections can be configured to
allow reads, writes or both by the caller of the VM. This offers minimal
overhead for memory access while providing the guarantees required
for the sandbox.

Second is the protections on the code executed to ensure that the

Table 5.2: rBPF load and store instructions

Opcode Store Instruction Pseudocode Opcode Load Instruction Pseudocode

Ox63 *(u32 x) (dst + off) = src Ox61 dst = %x(u32 *) (src + off)
Ox6b *(ulé x) (dst + off) = src Ox69 dst = x(ulé *) (src + off)
Ox73 *(u8) (dst + off) = src Ox71 dst = *x(u8 *) (src + off)
Ox7b *(u64 %) (dst + off) = src Ox79 dst = %x(u6d4 *) (src + off)
Ox62 *(u32 *) (dst + off) = imm 0x18 dst = imm

Ox6a *(ulé *) (dst + off) = imm

Ox72 *(u8 *) (dst + off) = imm

Ox7a *(u64 x) (dst + off) = imm

531 CHAPTER 5. RBPF: A TINY SOFTWARE-ONLY VIRTUAL MACHINE FOR lOT 72

VM does not start to execute code outside the supplied application
such as gadget deployed by an attacker. The mechanism works by
guarding the branch and jump instructions, ensuring that the jump is
not outside the application address space. As the virtual program
counter can only be adjusted by jump instructions, the only guard
required is to ensure that jump instructions keep the program counter
within the application space.

To provide persistent data between these short-lived invocations a
key-value store is available. An application can read and write values to
both a global and a per-script local storage. Counters or aggregate
sensor values can be stored for retrieval in a subsequent application
execution.

loT Operating System

_________ - OS Facilities
OS facilities | :

C/C++

Rust eBPF
— | —
Bytecode:

TinyGo

Sandboxed
execution

Hatah

5.3 EXPERIMENTAL EVALUATION

The measurements are carried out on popular, commercial off-the-shelf
loT hardware: the Nordic nRF52840 Development Kit. This board
provides a typical Arm Cortex-M4-based microcontroller with 256 KiB
RAM, 1 MiB Flash, and a 2.4 GHz radio transceiver compatible both
with IEEE 802.15.4, and Bluetooth Low-Energy. This hardware is
also available for reproducibility on open access test beds such as
loT-Lab [17].

On this platform, two types of benchmarks are performed:

1. Measurements of the embedded computing performance pro-
vided the VM, to get an idea of basic VM performance.

2. Benchmarks of the loT networking capabilities as provided from
within the VM.

As second VM to compare against, a Wasm-based virtual machine
implementation, WASM3 is used. Wasm is used as it is recently
developed and ported to microcontrollers and is currently popular for
development as described in subsection 2.7.2.

Figure 5.6: rBPF application code
development and execution workflow.

534 CHAPTER 5. RBPF: A TINY SOFTWARE-ONLY VIRTUAL MACHINE FOR lOT 73

53.1 COMPUTING BENCHMARK SETUP

First, the Fletcher32 checksum algorithm [70] is used as basic perfor-
mance benchmark. The Fletcher32 checksum algorithm requires a mix
of mathematical operations memory reads and branches, containing a
loop over input data. Benchmark results consist of the impact of the
VM on the operating system in the additional memory required to
include it. For the VMs themselves, the execution speed and the size of
compiled applications loaded into the VM is measured.

5.3.2 NETWORKED BENCHMARK SETUP

Next, a setup involving a simple loT networked application as case
study is constructed. The VM hosts high-level logic, and this loaded
application is updatable over the network. The functionality mimics an
application used in prior work [28], using small JavaScript run-time
containers hosting application code on top of RIOT. The hosted logic
has access to both the high-level sensor interface (called SAUL) and the
CoAP stack of RIOT. The VM execution is triggered by a CoAP request
and the operating system expects a formatted CoAP response payload
or an error code from the application loaded in the VM. The goal is
to load an application into the VM that, when triggered by a CoAP
request, reads a sensor value and constructs a full CoAP payload as
response to the requester.

5.3.3 VIRTUALMACHINE MEMORY
REQUIREMENT

Using our experimental setup, an initial set of measurements comparing
rBPF and WASM3 are carried out. With each prototype, the performance
of VM logic when it hosts the same Fletcher32 checksum is measured.
While this example is specific and artificial, it is a good guinea pig to
get an idea of what to expect in general. The Fletcher32 checksum
algorithm requires a mix of mathematical operations memory reads
and branches, containing a loop over input data.

First and foremost as visible in Table 5.3, observe that the Flash
memory footprint of the interpreter WASM3 is 15 times bigger than the
rBPF interpreter. To get a perspective: relatively to the whole firmware
image (assuming simple business logic and a CoAP/UDP/6LoWPAN
network stack) adding an rBPF VM represents negligible Flash memory
overhead (less than 10 % increase), whereas adding a Wasm VM more
than doubles the size of the firmware image.

ROMsize RAMsize

WASM3 Interpreter 64 KiB 85 KiB
rBPF Interpreter 4364B 660 B
Host OS Firmware (without VM) 52760B 14856B

Table 5.3: Memory requirements for
WASM3 and rBPF interpreters.

535 CHAPTER 5. RBPF: A TINY SOFTWARE-ONLY VIRTUAL MACHINE FOR lIOT 74

5.3.4 APPLICATION SIZE COMPARISON

To compare the application sizes and thus the data that needs to be
transferred over the network for an update, the size of a small native
software module is measured. This is compared against the payload
data size transferred over the network when the hosted VM logic is
updated. With the results as in Table 5.4, it is visible that Wasm script
size seem somewhat smaller than rBPF script size (approximately 30 %
less in this case). The native C compilation shows the size of the code
if the library is compiled into the device firmware itself and is not
network updatable without extra measures.

Next, the penalty in terms of execution time for VM logic is compared.
The performance of Fletcher32 computation on a sample input string
of 361 B, with each VM is compared. The measurements show that
execution is longer with the rBPF VM, than with the Wasm VM (2 x
longer). Both VMs perform significantly slower than native execution,
with WASM3 approximately 35 times slower and rBPF around 70 times
slower. However, in terms of instructions, rBPF still enables 1.3M
instructions per seconds — a fair performance for a low-power loT
device which generally is not required to process ultra-high data
throughput.

Based on these preliminary measurements, it can be concluded
that rBPF seems to offer acceptable performance in general, and in
particular a very substantial advantage in terms of Flash memory
footprint compared to Wasm. Hence, a VM approach based on rBPF
seemed promising, and the prototype is fleshed out further, to perform
additional experiments with IoT use-cases involving a CoAP network
stack.

5.3.5 RBPFWITHLOGICINVOLVINGIOT
NETWORKING

A use-case described in prior work [28] is reproduced, whereby high-
level logic involving CoAP networking is executed by the VM. More
precisely, the performance the hosted code shown in Listing 5.1 is
evaluated. The application requests a measurement value from the
first sensor and stores the value in a CoAP response. The functions
called here are provided by the host operating system and exposed to
the VM. Implemented are the CoAP bindings as well as the bindings to
the high-level sensor (SAUL) interface as depicted in Figure 5.1.

int coap_resp(bpf_coap_ctx_t 4gcoap)

{
/% Find first sensor ./
bpf_saul_reg_t ,sens = bpf_saul_reg_find_nth(1);
phydat_t m; /4 measurement value ./

if (!sens ||
(bpf_saul_reg_read(sens, &m) < 0)) {
return ERROR_COAP_INTERNAL_SERVER;
}

/« Format the CoAP Packet ,/

code size time
Native C 74B 27 ps
WASM3 322B 980 us
rBPF 456B 1923 pus

Table 5.4: Size and performance of
different targets for the Fletcher32
algorithm.

541 CHAPTER 5. RBPF: A TINY SOFTWARE-ONLY VIRTUAL MACHINE FOR lOT 75

bpf_gcoap_resp_init(gcoap, COAP_CODE_CONTENT);

bpf_coap_add_format(gcoap, 0);

ssize_t pdu_len = bpf_coap_opt_finish(gcoap,
COAP_OPT_FINISH_PAYLOAD) ;

/« Add the sensor as payload 4/

uint8_t ypayload = bpf_coap_get_pdu(gcoap);

pdu_len += bpf_fmt_sl16_dfp(payload, m.val[0],
m.scale);

return pdu_len;

s B

Listing 5.1: Example networked sensor read application

5.3.6 APPLICATION FLASH REQUIREMENT

When compiled, the size of the bytecode is 296 B. The overhead of the
full script execution, including the execution of the function calls, is
94 ps. The additional overhead caused by the VM is negligible, when
compared to network latencies of several milliseconds.

The size of the full firmware image is 69 KiB, including the rBPF
interpreter. While the Flash memory required for the core rBPF
interpreter is identical to the previous example (see Table 5.3), there is
however an 80 B increase in Flash size due to the additional bindings to
the CoAP and sensor interfaces. The RAM requirements are increased
by 16 B for an additional memory access region, used to allow access
to the CoAP packet.

5.3.7 RUNTIME MEMORY REQUIREMENT

Here, as an additional point of comparison, can refer to similar logic
hosted in a small embedded JavaScript run-time container with RIOT
bindings, studied and measured in [28] on similar hardware (a Arm
Cortex-M microcontroller). These measurements show that similar
logic requires 156 KiB for the JavaScript engine, on top of the 59 KiB
used by RIOT, and the hosted code (script) size which was around
1KiB. Note furthermore that these JavaScript containers did not
specific memory isolation guarantees, as does rBPF. It can thus be
concluded that rBPF offers much better prospects than embedded
JavaScript run-time containers too, in terms of memory requirements,
hosted logic size and network traffic overhead required to transmit VM
updates.

5.4 DISCUSSION

5.4.1 INHERENT LIMITATIONS WITH AVM

By construction, a VM causes execution overhead by interpreting
instructions. In turn this increases power consumption with logic
executed within the VM instead of native execution. Measuring the full
impact of the VM on power consumption is a complex task. However,
this impact of increased power consumption is mitigated by two factors.
On one hand, depending on the characteristics of the logic executed in

54.4 CHAPTER 5: RBPF: A TINY SOFTWARE-ONLY VIRTUAL MACHINE FOR lOT 76

the VM, this overhead may be negligible. For instance, in this setup,
The VM is geared towards hosting simple scripts implementing short
decision steps rather than lengthy bulk data processing. In such cases,
the additional power consumed is not substantial when compared
with native execution. On the other hand, smaller script size decreases
drastically the energy needed otherwise to transfer software updates,
instead of a full firmware update, only the VM application has to be
updated.

5.4.2 DECREASING WASM RAM USAGE

One limitation that was hit with WebAssembly is the relatively large
RAM requirements: 64 KiB memory pages increment is excessive in the
field of low-power microcontrollers. For this reason, based on these
measurements, it cannot be concluded yet on how useful Wasm really
is for low-power loT. Also note that the WASM3 interpreter adds an
intermediate compile step increasing speed, which also increases the
RAM usage by another 10 KiB. Excluding this step in an interpreter can
trade a reduction in execution speed performance for reduced memory
consumption. An implementation more geared towards embedded
applications might be able to reduce the RAM requirements. A next
step here could also be to try out other interpreters such as for instance
Wasm-micro-runtime [52] and WARDuino [81].

5.4.3 IMPROVING RBPF EXECUTION TIME
OVERHEAD

If execution time overhead really becomes an issue, then going back to
design a VM from scratch, not restricted to a software-only solutions,
and use hardware MPU or even an MMU as base for memory protection.
A more advanced step is to translate the executed instructions ahead-
of-time into native instruction on the embedded device. Adding such
an intermediate transpilation technique to rBPF (similar to what is
used by WASM3) and translate the raw eBPF instructions to a format
more suitable for direct consumption on the system can significantly
reduce the execution time overhead. Either of these enhancements
however will increase the memory requirements on the host by the
added complexity.

5.4.4 DECREASING RBPF SCRIPT SIZE
OVERHEAD

The rBPF VM implementation is designed as a secure sandbox for
running untrusted code on small embedded devices while adhering to
the already defined eBPF ISA. It can be seen from the application
script sizes that the current implementation are relative big compared
to applications compiled to WebAssembly bytecode. As the eBPF
instructions are fixed in size and can contain a lot of unused bit fields
depending on the exact instruction, compressing them with well
known algorithms can reduce this downside. Initial measurements
show that Heatshrink [27], an LZSS-based [159] compression library
suitable for small embedded systems, can reduce the application size

5.5 CHAPTER 5. RBPF: A TINY SOFTWARE-ONLY VIRTUAL MACHINE FOR |IOT 77

by 60 % depending on the application surpassing similar WebAssembly
applications.

5.4.5 EXTENDING RBPF SANDBOXING
GUARANTEES

The current use case of rBPF lies in short term execution of business
logic and debug applications. However the current VM design does
not limit the actual execution time of the application, a virtualised
application can keep the system busy without limitations, possibly
draining the battery of the loT device. A potential next step could be
to limit the CPU time a single invocation of the virtual machine can
occupy, further limiting the potential harm untrusted code can inflict
on the device.

55 CONCLUSION

In this chapter, | present the design of a minimal VM, implemented
and studied experimentally against a second VM implementation,
both targeting low-power, microcontroller-based IoT devices. rBPF
is a register-based VM hosed in RIOT, and an interpreter based on
Linux’s extended Berkeley Packet Filters. | compare the performance,
experimentally on commercial IoT hardware, to an approach hosting
high-level logic in an embedded WebAssembly virtual machine. With
the benchmarks | show that, compared to WebAssembly and to prior
work on small run-time containers for interpreted logic, hosting rBPF
VMs requires an overhead of 10 % of flash usage for a typical loT
application. When compared to the 200 % extra flash usage required
by Wasm implementations, rBPF is much more attractive.

As presented here, rBPF can be used to isolate small applications
inside the VM. It is a promising approach to host and isolate small
software modules, with acceptable execution time overhead and
without any reliance on specific hardware. It shows minimal memory
overhead of 10 % for a typical loT application.

The future direction for rBPF is to use it as core VM for a rich multi-
tenant environment around the sandbox. The minimal footprint of
rBPF with a trusted environment must be extended to an environment
in which different stake holders can adjust the functionality of a
pre-programmed device in a reliable manner without having to update
the whole firmware.

CHAPTER ©

SANDBOXED FUNCTION EXECUTION

FOR DEVOPS-STYLE
RECONFIGURATION OF
CONSTRAINED DEVICES

The capability to run applications inside a VM and virtualise these
applications can be leveraged further. The applications can be bundled
into small software components and isolated from the operating
system. The operating system can be enhanced to offer rich facilities
to the applications inside the VM. Extrapolating this, the result is a
Functions-as-a-Service-like environment specifically geared towards
microcontrollers.

Such a FaaS-like environment provides an environment where small
event-triggered functions can be run, providing the device operator
with debug or business logic on the device. This logic can be update as
a single module without having to update the full firmware on the
device. Furthermore, because of the isolated nature of the VM, the
function runs in a fault-tolerant environment. It is not possible for the
function to directly influence the memory of the operating system, only
through bindings exposed by the operating system.

Inthis chapter, rBPF is further extended into Femto-Container to provide
arich and secure FaaS-like environment for microcontrollers. The
design of Femto-Container, together with benchmarks and comparison
against other environments is presented.

The work is published before as “Femto-containers: lightweight
virtualization and fault isolation for small software functions on
low-power loT microcontrollers” [2], presented in Middleware 2022 -
23rd ACM/IFIP International Conference Middleware.

6.1 THREAT MODEL

When a client deploys functions on a device operational in the field, the

embedded environment has to ensure these functions are sandboxed.

In this threat model, both malicious tenants which can deploy malicious

78

6.1.3 CHAPTER 6: SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION 79

code and malicious clients which can maliciously interact with deployed
code are considered.

6.1.1 MALICIOUS TENANT

The malicious tenant seeks to gain elevated permissions on the device
it has already a set of permissions on. This tenant is already allowed to
run code in the sandboxed environment, and the tenant might want to
break free from the sandbox to either the host system or a different
sandbox it does not have permissions for. While a tenant has to work
within the permissions granted by the host service, it can make free
use of the granted resources.

6.1.2 MALICIOUS CLIENT

The malicious client does not have any permissions for running
sandboxed code on the device. The only access the malicious client
has is access to networked endpoints exposed by the device, e.g.
CoAP endpoints exposed by existing sandboxed environments. The
malicious client seeks to gain any permission on the device to influence
it or gain access to confidential data on the device. The malicious
client could make use of an already vulnerable tenant function.

6.1.3 ATTACKVECTORS

A number of attack vectors are considered to be in scope for the
sandbox used in Femto-Container in this work:

« Install and update time attacks: These attacks focus on modifying
the application during the transport to the sandbox environ-
ment. This includes man-in-the-middle modifications to the
applications.

« Privilege escalation to a different sandbox: This class of attacks
focus on escaping the sandbox of the application to a different
sandbox. The new sandbox could have different permissions.

« Privilege escalation to the operating system: This attack class
attempts to escape the sandboxed environment altogether to
the operating system.

« Resource exhaustion attacks: The constrained devices considered
here have very limited resources, both computational power and
battery energy are limited. A denial of service vector can be to
exhaust these resources.

Another attack vector that can be considered is resource exhaustion of
resources on the host system itself. These can be attacked from a
sandbox environment itself or via a different surface. While these
attacks can cause harm to the system, for example to cause excessive
battery drain, the responsibility to protect against these attacks is
with the operating system and not for the sandbox environment, and
therefor out of scope of this work.

6.2.3 CHAPTER 6: SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION 80

To the best of my knowledge, this work provides the first formally
verified middleware based on eBPF virtualisation able to host multiple
tiny runtime containers on a wide variety of heterogeneous low-power
microcontrollers.

6.2 EMBEDDED RUNTIME
ARCHITECTURE DESIGN

In this section, Femto-Containers is introduced, a new embedded
runtime architecture tailored for constrained loT devices, as described
in the following. Similarly to a FaaS runtime, Femto-Containers allow
for the deployment and execution of small logic modules. These
modules, or functions, are hosted on top of a middleware offering
isolation and abstraction with respect to the underlying OS and
hardware. By combining isolation and hardware/OS abstraction, the
crucial properties of FaaS runtimes are retained: code mobility and
security. Differently from typical FaaS runtimes, however, Femto-
Containers must be able to interact with specific hardware (such as
sensor/actuators), and must drastically reduce the scope and the cost
of virtualisation to operate within the constraints IoT hardware. The
Femto-Container architecture therefore relies on ultra-light weight
virtualisation, as well as on a set of assumptions and features regarding
an underlying RTOS, defined below.

6.2.1 USEOFANRTOS WITH
MULTI-THREADING

It is assumed that the RTOS supports real-time multi-threading with a
scheduler. Each Femto-Container runs in a separate thread. Well-
known operating systems in this space can provide for that, such
as RIOT [30] or FreeRTOS [20] and others [83]. These can run on
the bulk of commodity microcontroller hardware available. Note
that RTOS facilities for scheduling enable simple controlling of how
Femto-Containers interfere with other tasks in the embedded system.

6.2.2 NOASSUMPTIONS ON
MICROCONTROLLER HARDWARE

To retain generality, the aim is purely software-based isolation, which
can also run on the least capable microcontrollers, without any
assumptions on hardware architecture enhancements or security
peripherals. If present, hardware-based isolation features could
nevertheless be used to add layers of protection in-depth. For instance
TrustZone software module isolation relies on enhanced ARM Cortex-M
microcontroller architectures [135].

6.2.3 USEOFULTRA-LIGHTWEIGHT
VIRTUALISATION

The virtual machine (VM) provides hardware agnosticism, and should
therefore not rely on any specific hardware features or peripherals.

6.2.7 CHAPTER 6;: SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION 81

This allows for running identical application code on heterogeneous
hardware platforms. The VM must have a low memory footprint, both
in Flash and in RAM, per instantiated VM application. This allows to
run multiple VMs in parallel on the device. Note that, as the aim is to
virtualise less functionalities, the VM can in fact implement a reduced
virtual hardware feature set. For instance, virtualised peripherals such
as an interrupt controller are not required, and remove the possibility
of virtualising a full OS.

6.2.4 USEOFSIMPLE CONTAINERIZATION

A slim environment around the VM exposes RTOS facilities to the VM.
The container sandboxing a VM allows this VM to be independent of
the underlying operating system, and provide the facilities as a generic
interface to the VM. Simple contracts between container and RTOS can
be used to define and limit the privileges of a container regarding its
access to OS facilities. Note that such limitations must be enforced at
run-time to safely allow third party module reprogramming.

6.2.5 ISOLATION & SANDBOXING THROUGH
VIRTUALISATION

The OS and Femto-Containers must be mutually protected from
malicious code. This implies in particular that code running in the VM
must not be able to access memory regions outside of what is allowed.
Here again, simple contracts can be used to define and limit memory
and peripheral access of the code running in the Femto-Container.

6.2.6 EVENT-BASED LAUNCHPAD
EXECUTION MODEL

Femto-containers are executed on-demand, when an event in the
RTOS context calls for it. Femto-container applications are rather
short-lived and have a finite execution constraint. This execution
model fits well with the characteristics of most low-power IoT software.
To simplify containerization and enforce security-by-design, the design
mandates that Femto-Containers can only be attached and launch
from predetermined launch pads, which are sprinkled throughout
the RTOS firmware. Where applicable however, the result from the
Femto-Container execution can modify the control flow in the firmware
as defined in the launch pad.

6.2.7 LOW-POWER SECURE RUNTIME
UPDATE PRIMITIVES

Launching a new Femto-Container or modifying an existing Femto-
Container can be done without modifying the RTOS firmware. However,
updating the hooks themselves requires a firmware update. In our
implementation, both types of updates use CoAP network transfer
and software update metadata defined by SUIT [7] (CBOR, COSE) to
secure updates end-to-end over network paths including low-power
wireless segments. Leveraging SUIT for these update payloads provides

6.31 CHAPTER 6;: SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION 82

authentication, integrity checks and roll-back options. Updating a
Femto-Container application attached to a hook is done via a SUIT
manifest. The exact hook to attach the new Femto-Container to is done
by specifying the hook as Universally Unique Identifier (UUID) as
storage location in the SUIT manifest. A rapid develop-and-deploy
cycle only requires a new SUIT manifest with the storage location
specified every update. Sending this manifest to the device triggers the
update of the hook after the new Femto-Container application is
downloaded to the device and stored in the RAM.

6.3 ULTRA-LIGHTWEIGHT VM
MICRO-BENCHMARK

In this section, the performance of an initial proof of concept using
RIOT [30] to host Femto-Container runtimes is compared. Different
ultra-lightweight virtualisation techniques are compared: Python
(MicroPython runtime), WebAssembly (WAMR runtime), eBPF (rBPF
runtime) and JavaScript (RIOTjs runtime).

Experiments with Femto-Containers are run using each virtualisa-
tion candidate on popular, commercial, off-the-shelf oT hardware,
representative of the landscape of modern 32-bit microcontroller
architecture that are available: Arm Cortex-M, ESP32, and RISC-V.

In these benchmarks reported on below, each Femto-Container is
minimally implemented, and loaded with a VM hosting logic performing
a Fletcher32 checksum on a 360 B input string. The assumption is
that this computing load roughly mimics intensive sensor data (pre-)
processing on-board.

Our benchmarks results are shown in Table 6.1 and Table 6.2. Runtime ROMsize RAM size

WASM3 64KiB 85KiB
eBPF 44KB 0.6KiB
6.3.1 CONSIDERING SIZE RIOTjs 121KiB 18KiB
WuPython 101KiB 8.2KiB

While the size of applications are roughly comparable across virtualisa-

tion techniques (see Table 6.2) the memory required on the IoT device Bare Host 525KiB 16.3KIB

0S

differs wildly. In particular, techniques based on script interpreters
(RIOTjs and MicroPython) require the biggest dedicated ROM memory Table 6.1: Memory requirements for
budget, above 100 KiB. Femto-Container runtimes.

6.3.3
Runtime codesize startuptime runtime
Native C 74B - 27 us
WASM3 322B 17096 us 980 us
rBPF 456 B lpus 2133 s
RIOTjs 593 B 5589us 14726 s
MicroPython 497B 21907 us 16325pus

For comparison, the biggest ROM budget measured requires 27 times
more memory than the smallest budget. Similarly, RAM requirements
vary a lot. Note that it was not possible to determine with absolute
precision the lower bound for script interpreters techniques, due
to some flexibility given at compile time to set heap size in RAM.
Nevertheless, our experiments show that the biggest RAM budget
requires 140 times more RAM than the smallest budget. As noted in
chapter 5 the minimum required page size of 64 KiB to comply with the
WebAssembly specification explains why Wasm performs poorly in
terms of RAM. One can envision enhancements where this requirement
is relaxed. However the RAM budget would still be well above an order
of magnitude more than the lowest RAM budget as measured with
rBPF.

Last but not least, to give some perspective by comparison with a typical
memory budget for the whole software embedded on the IoT device.
As a reminder, in the class of devices considered, a microcontroller
memory capacity of 64kB in RAM and 256kB in Flash (ROM) is not
uncommon. A typical OS footprint for this type of device is shown in the
last row of Table 6.1. For such targets, according to our measurements,
adding a VM can either incur a tremendous increase of 200 % more
ROM with MicroPython, or a negligible impact with 8 % more ROM with
rBPF as visualized in Figure 6.1 and Figure 6.2.

6.3.2 CONSIDERING SPEED

To no surprise, beyond size overhead, virtualisation also has a cost in
terms of execution speed. But here again, performance varies wildly
depending on the virtualisation technique. On one hand, solutions
such as MicroPython and RIOTjs directly interpret the code snippet and
execute it. On the other hand, solutions such as rBPF and WASM3
require a compilation step in between to convert from human readable
code to machine readable.

Our measurements show that script interpreters incur an enormous
penalty in execution speed. Compared to native code execution, script
interpreters are *600 times slower. Compared to the same base (native
execution) Wasm is only 37 times slower, and rBPF 77 times slower.

One last aspect to consider is the startup time dedicated to preliminary
pre-processing when loading new VM logic, before it can be executed
(including steps such as code parsing and intermediate translation, var-
ious pre-flight checks etc.). Depending on the virtualisation technique,
this startup time varies almost 1000 fold — from a few microseconds
compared to a few milliseconds.

CHAPTER 6;: SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION 83

Table 6.2: Size and performance of
Fletcher32 logic hosted in different
Femto-Container runtimes.

Runtime
66%

Figure 6.1: Flash memory distribution
of RIOT with MicroPython Femto-
Container, 154 KiB total.

runtime
8%

Figure 6.2: Flash memory distribution
of RIOT with rBPF Femto-Container,
57 KiB total.

6.4.1 CHAPTER 6;: SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION 84

6.3.3 CONSIDERINGVMARCHITECTURE &
SECURITY

Wasm, MicroPython and RIOTjs each require some form of heap on
which to allocate application variables. On the other hand, rBPF
does not require a heap. With a view to accommodating several VMs
concurrently, a heap-based architecture presents some potential
advantages in terms of memory (pooling) efficiency, however it also has
some potential drawbacks in terms of security with mutual isolation of
the VMs’ memory.

Furthermore, security guarantees call for a formally verified implemen-
tation of the hosting engine. A typical approximation is: less Lines of
Code (LoC) means much less effort to produce a verified implemen-
tation. For instance, the rBPF implementation is 1.5 kLoC, while
the WASM3 implementation is 10 kLoC. The other implementations
considered in our pre-selection, RIOTjs and MicroPython, encompass
significantly more LoC.

6.3.4 CHOICE OF VIRTUALISATION

Our benchmarks indicate that in terms of memory overhead, startup
time and LoC, Femto-Containers using rBPF virtualisation is the most
attractive, by far. Note that execution time with Femto-Containers using
WebAssembly is 2x faster than Femto-Containers using rBPF. However,
it is expected that a 2x factor in execution time will have no significant
impact in practice, for the use cases targeted: small lightweight
workloads. Since the priority is on memory footprint, the aim is
~10 percent memory overhead for functionality containerization,
rBPF is chosen to flesh out the concept further.

6.4 FEMTO-CONTAINER RUNTIME
IMPLEMENTATION

The Femto-Container VM design is based on rBPF which is designed
from the eBPF instruction set architecture. The instruction set itself is
minimal and optimized for fast parsing with compact code. As proof
of concept, the Femto-Container architecture is implemented with
containers hosted in the operating system RIOT and virtualisation
using an instruction set compatible with the eBPF instruction set.
This implementation is open source (published in [14]). The main
characteristics are shown in detail below.

6.4.1 USEOF RIOT MULTI-THREADING

Each Femto-Container application instance running on the operating
system is scheduled as a regular thread in RIOT. The native OS thread
scheduling mechanism can thus simply execute concurrently and share
resources amongst multiple Femto-Containers and other tasks, spread
over different threads. An overview of how Femto-Containers integrates
in the operating system is shown in Figure 6.3. A Femto-Container
instance requires minimal RAM:a small stack and the register set,

6.4.2.0 CHAPTER 6;: SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION 85

but no heap. The host RTOS bears thus a very small overhead per
Femto-Container instance.

The hardware and peripherals available on the device are not accessible
by the Femto-Container instances. All interaction with hardware
peripherals passes through the host RTOS via the system call interface.
Asthe Femto-Container VM does not virtualise its own set of peripherals,
no interrupts or pseudo-hardware is available to the Femto-Container
application. This also removes the option to interrupt the application
flow inside a Femto-Container.

KEY-VALUE STORE.

In lieu of a file system, applications hosted in Femto-Containers
can load and store simple values, by a numerical key reference, in a
key-value store. This provides a mechanism for persistent storage,
between application invocations. Interaction with this key-value store
is implemented via a set of system calls, keeping it independent of the
instruction set. By default, two key-value stores are provided by the
operating system. The first key-value store is local to the application,
for values that are private to the VM accommodated in the container.
The second key-value store is global, and can be accessed by all
applications, used to communicate values between applications. An
optional third intermediate-level of key-value store is possible to
facilitate sharing data across a set of VMs from the same tenant, while
isolating this set of VMs from other tenants’ VMs.

6.4.2 ULTRA-LIGHTWEIGHT
VIRTUALISATION USING EBPF
INSTRUCTION SET

Application code is virtualised using Femto-Containers, our enhance-
ment of the rBPF VM implementation. rBPF is again based on the Linux
eBPF. The architectures of these VM are similar enough that they all
use the LLVM compiler with the eBPF target for compilation.

REGISTER-BASED VM

The VM operates on eleven registers of 64 bits wide. The last register
(r10)is a read-only pointer to the beginning of a 512 B stack provided
by the Femto-container hosting engine. Interaction with the stack
happens via load and store instructions. Instructions are divided into
an 8 bit opcode, two 4 bit registers: source and destination, an 16 bit
offset field and a 32 bit immediate value. Position-independent code
is achieved by using the reference in r10 and the offset field in the
instructions.

JUMP TABLE & INTERPRETER

The interpreter parses instructions and executes them operating on the
registers and stack. The machine itself is implemented as a computed
jump table, with the instruction opcodes as keys. During execution, the
hosting engine iterates over the instruction opcodes in the application,

6.4.3.0 CHAPTER 6;: SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION 86

| 0S Flow

: Event

! Hook

: Os Bindings E :
E | Virtual E
| Bypass [Storej ! Machine I
C with | |
' default ! Femto-Container :
E result ! (Ephemeral) '
. /Result Result

E usage

| Hosting Engine

. I
RIOT Operating System | Figure 6.3: Femto-Container RTOS

integration.

and jumps directly to the instruction-specific code. This design keeps
the interpreter itself small and fast.

AHEAD-OF-TIME VS JUST-IN-TIME

One approach to speed up embedded execution time is to perform a
translation into device-native code. One way to offload the device is to
use more Ahead-of-Time (AOT) compilation and interpretation, and
less Just-in-Time (JIT) processing on-device. However, using AOT pre-
compiled code can both complicate run-time security checks on-board
the loT device, and reduce the portability of the code deployed on the
device. For these reasons, in this section, primarily JIT is considered.

6.4.3 ISOLATION & SANDBOXING

To control the capabilities of Femto-Containers, and to protect the 0S
from memory access by malicious applications, a simple but effective
memory protection system is used. By default each VM instance only
has access to its VM-specific registers and its stack.

MEMORY ACCESS CHECKS AT RUNTIME

The allowlist can be configured (attached in the hosting engine) to
explicitly allow a VM instance access to other memory regions. These
memory regions can have individual flags for allowing read/write

6.4.4 CHAPTER 6;: SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION 87

Instruction

Other + Continue
Decode

Instruction/

Instruction —

Read/Write
Access List

Figure 6.4: Interaction between
memory instructions and the access
lists.

access. For example, a firewall-type trigger can grant read-only access
to the network packet, allowing the VM to inspect the packet, but not
to modify it. As the memory instructions allow for calculated addresses
based on register values, memory accesses are checked at runtime
against the resulting address, as show in Figure 6.4. Illegal access
aborts execution.

PRE-FLIGHT INSTRUCTION CHECKS

A Femto-Container verifies the application before it is executed for the
first time. These checks includes checks on the instruction fields. For
example, as there are only 11 registers, but space in the instruction for
16 registers, the register fields must be checked for out-of-bounds
values. A special case here is register r10 which is read-only, and thus
is not allowed in the destination field of the instructions.

The jump instructions are also checked to ensure that the destination
of the jump is within the address space of the application code. As
calculated jump destinations are not supported in the instruction set,
the jJump targets are known before executions and are checked during
the pre-flight checks. During the execution of the application, the jump
destinations no longer have to be verified and can be accepted as valid
destinations.

Finite execution is also enforced, by limiting both the total number
of instructions IV, and the number of branch instructions N, that
are allowed. In practice, this limits the total number of instructions
executed to: N; x Nj.

6.4.4 HOOKS & EVENT-BASED EXECUTION

The Femto-container hosting engine instantiates and runs containers
as triggered by events within the RTOS. Such events can be a net-
work packet reception, sensor reading input or an operating system
scheduling events for instance. Business logic applications can be
implemented either by directly responding to sensor input or by
attaching to a timer-based hook to fire periodically.

Simple hooks are pre-compiled into the RTOS firmware, providing a
pre-determined set of pads from which Femto-Containers can be
attached and launched.

1 sched_ctx_t context = {

6.5.2 CHAPTER 6. SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION 88

.previous = active_thread,
.next = next_thread,

a };
s int64_t result;

s fc_hook_execute (BPF_HOOK_SCHED, &context,
sizeof(context), &result);

Listing 6.1: Example hook implementation.

An example of a hook integrated in the firmware is shown in Listing 6.1.
The firmware has to set up the context structure for the Femto-
Containers after which it can call the hosting engine to execute the
containers associated with the hook.

6.5 USE-CASE PROTOTYPING WITH
FEMTO-CONTAINERS

In this section, the programming model exposed by Femto-Containers
is described. Furthermore Femto-Containers is used to prototype the
implementation of several use cases involving one or more applications,
hosted concurrently on a microcontroller, matching targets identified
initially. Where multiple function are involved, these are hosted
concurrently on a single microcontroller.

6.5.1 PROGRAMMING MODEL

In the prototype implementation shown below, C is used to code logic
hosted in Femto-Containers. However, any other language compiled
with LLVM could be used instead such as C++, Rust and TinyGo.

Inherent limitations due to the eBPF instruction set, combined with the
absence of virtualised hardware, restrict what logic can be deployed
in Femto-Containers currently. Femto-Containers are designed to
host logic that is rather script-like, short-lived, and not computation-
intensive. On the one hand, such characteristics increase security-
by-design. On the other hand they reduce flexibility. For instance,
asynchronous operation is not supported: there is no option to
interrupt the control flow inside a Femto-Container from outside the
VM. Another limitation is the fixed, small size of the stack (512 Bytes)
dictated by the eBPF specification. More memory-consuming tasks
would need special handling to provide additional memory. Allowing
the application to request more stack from the RTOS, for example via
the contracts, could solve part of this issue. More computation- and
memory-intensive tasks could also make use of additional system calls
provided by the RTOS, which could execute generic primitives at native
speed.

6.5.2 KERNELDEBUG CODE EXAMPLE

The first prototype consists in a single application, which intervenes
on a hot code path: itis invoked by the scheduler of the OS, to keep

[

14

15

16

17

18

19

20

21

24

25

6.5.3 CHAPTER 6: SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION

an updated count of threads’ activations. The logic hosted in the
Femto-Container is shown in Listing 6.2. A small C structure is passed
as context, which contains the previous running thread ID and the next
running thread ID. The application maintains a value for every thread,
incrementing it every time the thread is scheduled. External code can
request these counters and provide debug feedback to the developer.

#include <stdint.h>
#include "bpf/bpfapi/helpers.h"

#define THREAD_START_KEY 0x0

typedef struct {
uinté4_t previous; /4 previous thread ,/
uint64_t next; /+ next thread 4/

} sched_ctx_t;

int pid_log(sched_ctx_t 4ctx)
{
/% Zero pid means no next thread ./
if (ctx->next != 0) {
uint32_t counter;
uint32_t thread_key = THREAD_START_KEY +
ctx->next;
bpf_fetch_global(thread_key,
&counter);
counter++;
bpf_store_global(thread_key,
counter);

}

return 0;

}

Listing 6.2: Thread counter code.

6.5.3 NETWORKED SENSOR CODE
EXAMPLE

For the second prototype two Femto-Containers are added from
another tenant to the setup of the first prototype. Interaction between
these two additional containers is achieved via a separate key-value
store, as depicted in Figure 6.5. The logic hosted in the first Femto-
Container, periodically triggered by the timer event, reads, processes
and stores a sensor value. The code for this logic is shown in Listing 6.3.
#include <stdint.h>

#include <stdbool.h>
#include "bpf/bpfapi/helpers.h"

s #define SHARED_KEY 0x50

#define AVERAGING_LEN 10
#define PERIOD_US (1000 4, 1000)

static uint32_t _average(uint32_t jvalues)
{
uint64_t sum = 0;
for (size_t i = 0;
i < AVERAGING_LEN;

89

41

42

43

44

45

46

47

48

49

50

51

653

int

CHAPTER 6: SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION QO

i+4) {
sum += values[i];
}
return sum / AVERAGING_LEN;

measurement(void jconf)

uint32_t last_wakeup = bpf_ztimer_now();
uint32_t counter = 0;

size_t pos = 0;

bool initial = true;

uint32_t values[AVERAGING_LEN];

while (1) {
/« Read sensor value from sensor ,/
bpf_saul_reg_t jsensor;
phydat_t measurement;

/« Periodic blocking sleep 4/
bpf_ztimer_periodic_wakeup (&last_wakeup,
PERIOD_US);

/% Find first sensor 4/
sensor = bpf_saul_reg_find_nth(1);

/« Abort if the sensor is
not available ./
if (!sensor ||
(bpf_saul_reg_read(sensor,
&measurement) < 0)
) {
continue;

}

uint32_t value = measurement.val[0];

if (initial) {
/[« Fill array with the
initial measurement ./
for (size_t i = 0;
i < AVERAGING_LEN;
it+) {
values[i] = value;
}
initial = false;
}
else {
values[pos] = value;
post+;
if (pos >= AVERAGING_LEN) {
pos = 0;
}
}

uint32_t average =
_average(values);

6.5.3 CHAPTER 6;: SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION Q1

bpf_store_global (SHARED_KEY,
average);

}

/« Unreacheable 4/
return 0;

}

Listing 6.3: Femto-Container Sensor readout process.

The second container’s logic is triggered upon receiving a network
packet (CoAP request), and returns the stored sensor value back to the
requester. The code for this logic is shown in Listing 6.4.

#include <stdint.h>
#include "bpf/bpfapi/helpers.h"

#define SHARED_KEY 0x50

s #define COAP_OPT_FINISH_PAYLOAD (0x0001)

10

11

12

13

18

19

20

21

22

23

24

25

typedef struct {
uint32_t hdr_p; /+ ptr to raw packet 4/
uint32_t token_p; /+ ptr to token */
uint32_t payload_p; /« ptr to payload */
uintlé_t payload_len; /4 length of payload 4/
uintl6_t options_len; /4 length of options 4/
} bpf_coap_pkt_t;

s int coap_resp(bpf_coap_ctx_t 4gcoap)
s {

bpf_coap_pkt_t xpkt = gcoap->pkt;

/« Track executions 4/

uint32_t counter;

bpf_fetch_global (SHARED_KEY, &counter);

char stringified[20];
size_t str_len = bpf_fmt_u32_dec(stringified,
counter);

/« Format the packet with a 205 code 4/

bpf_gcoap_resp_init(gcoap, (2 << 5) | 5);

/% Add Text type response header ,/

bpf_coap_add_format(gcoap, 0);

ssize_t pdu_len = bpf_coap_opt_finish(gcoap,
COAP_OPT_FINISH_PAYLOAD);

uint8_t ,payload =
(uint8_ty) (intptr_t) (pkt->payload_p);

if (pkt->payload_len >= str_len) {
bpf_memcpy (payload, stringified,

str_len);
return pdu_len + str_len;

return -1;

Listing 6.4: Femto-Container CoAP Endpoint.

6.6 CHAPTER 6. SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION Q2

Timer Timer
Hook Event

" '(Femto-Container 2 |
CoAP L‘—T |
1 1

CoAP Response
Formatter

CoAP CoAP Response
Hook 5 e
Reply vent ormatter

CoAP

3
stack L:_Tena_n_t_A_ ____________ |

r— - - - --------------7 |

Femto-Container 3

1
I
Thread Switch ! |
. Thread Counter |
Switch Event :‘ |
I I
Kernel Hosting Engine | | |
1 1
. Lo Tenant B Figure 6.5: Event and value flow
. Bl_(?T E)_p_e_rajt_lqg_ _S}/S_t_e[n_ __________ ; when hosting multiple containers for
different tenants.
Pre-flight | _guarantee iner L optimize
Instruction Checks | Femto-Container |
T T !
1
E formalize / optimize E formalize X
s =
C-ready simulation | Clight Proof Model | Refinement/ C-ready simulation = o
Implementation model rootiode | equivalence Implementation §_, ni
R ! X | §<
properties : ' isolation N ' g2
I \\\assumption | T b E = Qaf
\ : S , ’('D"
N 1 extract (clightgen) * extract (clightgen) !
extract (3x)'\ X e extract (ax) !
N Verified C. guarantee N Verified C.
¥ Implementation |- - - == === - - - - =L - oo 4 Implementation
(Verifier) (Interpreter)

Figure 6.6: Certified Femto-Container (CertFC) Formal verification workflow.

In this toy example, the sensor value processing is a simple moving
average, but more complex post-processing is possible instead, such as
differential privacy or some federated learning logic, for instance. This
example sketches both how multiple tenants can be accommodated,
and how separating the concerns between different containers is
possible (between sensor value reading/processing on the one hand,
and on the other hand the communication between the device and a
remote requester).

6.6.2 CHAPTER 6. SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION O3

6.6 FORMALVERIFICATION

The critical components of Femto-Containers in terms of cyber-security
are the rBPF interpreter and the pre-flight instruction checker. Since
the implementation is conveniently small (500 lines of C code for the
interpreter and the checker), a formally verified implementation of
these components could be produced. This runtime, called Certified
Femto-Container (CertFC), which uses the formally verified interpreter
and checker.

6.6.1 TARGETED REQUIREMENTS
FORMALIZATION.

The security guarantees provided Femto-Containers with are essen-
tially memory and fault isolation. More precisely, the aim was to
prove it impossible for CertFC to access a memory location out of its
application’s register memory or to execute an instruction leading to
an undefined behavior, and consequently heading the VM and/or its
host to crash. Providing these guarantees further strengthens the
security needed with the threat model to prevent access to memory
outside of the sandbox, in turn preventing unprivileged access to the
operating system or other VM.

6.6.2 FORMALVERIFICATION APPROACH.

The Coq proof assistant was used to mechanically and exhaustively
verify these requirements by employing the multi-step design workflow
depicted in Figure 6.6:

1. First, a proof model and a C-ready implementation that formalize
and optimize the native, vanilla, C implementations of the rBPF
verifier and VM in RIOT was provided. Proof and C-ready models
are proved semantically equivalent in Coq.

2. The verification of expected safety and isolation properties is
performed by the Coq proof assistant on the VM’s proof model.
It relies on the formalized isolation guarantees provided by:

(@) The CompCert C memory model [106].
(b) the pre-flight runtime checks of the verifier.

(c) the defensive runtime checks of the VM itself for numerical
and memory operations.

3. The verified C implementation is automatically extracted from
the C-ready Cog model using the dx tool [100]. Based on a set of
formalized translation rule from Coq to C, ox allows to craft a
both reviewable and optimized C code from a functional Coq
definition.

4. To ensure that the extracted C code refines the proof model,
and hence satisfies the safety and isolation properties, the
final simulation proof proceeds in two steps. First,a CompCert
Clight model is extracted from the generated C code, using the

6.8 CHAPTER 6: SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION 94

VST-clightgen tool [23]. Second, proving that Clight model to
simulate the C-ready model using translation validation [136].

The pre-flight checks of the verifier are directly formalized by a C-ready
implementation in Coq because of its simplicity. By contrast, the
interpreter is first formalized by a proof model in Coq that defines the
formal syntax and semantics of the rBPF ISA. The Coq specification
is then refined into an optimized (yet semantically equivalent) C-
ready implementation in Coq, for the purpose of extracting C code
using ox. This refinement/optimization principle allows to 1) prove
the native optimizations correct, 2) improve the performance of
the extracted code and, 3) facilitate the extracted code review and
validation with system designers. Pre-flight checks, subsection 6.4.3,
define rudimentary guarantees for applications to run on the VM.
The formalization of these guarantees also defines necessary pre-
conditions to the verification of fault-isolation, i.e. the guarantee
verifier_inv of the verifier C-ready model is used as assumption
by the proof model of the interpreter. Combined with the registers
invariant register_inv and the memory invariant memory_-inv,
it yields the proof of software-fault isolation of CertFC in the Coq
proof assistant, that is, the isolation of all transitions to a crash state
using runtime safety checks, hence the impossibility of an undefined
behavior. The Coq theorem inv_ensure_no_undef states that our
model satisfies a software fault isolation property where st is a CertFC
state and fue'l is used to enforce finite execution.

Table 6.3 provides statistics on the complete specifications and proofs
of CertFC. The proof model of the interpreter consists of 2.4k lines
of Coqg code. The C-ready implementation model of the verifier &
interpreter is approx. 4.7k long. The proof of the VMs properties (e.g.
isolation) exceeds 5.4k and the refinement/equivalence theorem is
completed by a 0.6k proof. The final step includes 23.5k of translation
validation proofs between the Coq specification and the extracted
Clight model. The last part of Figure 6.6 is the manual validation

between the native C code and the verified implementation,
Table 6.3: Code statistics of CertFC

6.7 PERFORMANCE EVALUATION LoCs
Proof Model 2445

In this section the performance of Femto Containers is evaluated and C-ready Implementation 4744
compared with rBPF and CertFC runtimes. The comparison is done on Properties 5432
a number of low-power loT hardware platforms: Cortex-M4, RISC-V and Equivalence 635
. Simulation 23564

ESP32 based microcontrollers. (Total) 36820

6.8 HOSTING ENGINE ANALYSIS

The Femto-Container implementation is benchmarked on a number of
aspects. First, the footprint of the hosting engine on the embedded
device is compared. This shows the impact of adding Femto-Containers
to the applications. Second, the execution time of a number of
individual instructions is compared. This shows the difference in
computational overhead between the different implementations.

6.9

4,500

4,000 -

CHAPTER 6: SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION Q5

- (2 rBPF
B8 Femto-Containers |

3,500 |- | CertFC |
3,000 7y _ _
2500

o0t N N
1,500 i 7

1,00F

500 _ _

Bytes

To compare the impact of adding the Femto-Containers to an existing
firmware, the memory footprint of the different implementations is
measured and compared. In general, each Femto-Container needs
memory to:

« Store the application bytecode.
« Handle the VM state and stack.

The impact on the required flash on the firmware is shown in Figure 6.7
and Table 6.4. In terms of required RAM for execution, both rBPF and
Femto-Containers show comparable flash and RAM memory usage. In
terms of Flash memory size, our measurements show that CertFC
actually reduces the footprint by 55 % on Cortex-M4. The CertFC
implementation requires slightly more memory, an increase of around
50 B perinstance. This is caused by CertFC storing extra state of the VM
in the context memory structure and not on the thread stack.

The different implementations of Femto-Containers are compared
in Figure 6.8 against a set of eBPF instructions, showing that the
rBPF extensions incur minimal overhead on the VM and provide
similar throughputs. Now, the performance of the formally verified
CertFC is lagging behind the other implementations, revealing the
trade off between the formally verified code and a natively optimized
implementation.

6.9 EXPERIMENTS WITH A SINGLE
CONTAINER

In this section, the execution times of a number of Femto-Container ap-
plications are shown. This shows the applicability of Femto-Containers
in the different scenarios. The execution times are shown in Figure 6.11.

The first example executes a Fletcher32 checksum over a data string
of 360 B. It shows the time it takes for relative heavy processing
within the Femto-Containers VM. Depending on the platform and the
speed of the microcontroller it takes between 1.3 ms and 2.2 ms. For

Figure 6.7: Flash requirement for
the differentimplementations and
platforms

ROMsize RAMsize
Femto- 2992B 624 B
Containers
rBPF 3032B 620B
CertFC 1378B 672B

Table 6.4: Memory footprint of a
Femto-Container hosting minimal logic
on Arm Cortex-M4.

6.01 CHAPTER 6: SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION Q6

2775 (7o rBPF
2.5 |FEFemto-Containers
2.95]| CertFC

1.75
1.5
1.25

Js per instruction

0.75

Figure 6.8: Time per instructions on the Cortex-M4 platform

Femto-Containers the duration of this application is long.

The second example shown is the thread counter example previously < 2,000 |-

shown in Listing 6.2. In normal operation it is inserted in the thread g 1.500 L

switch hook provided by the operating system, a hot path in the OS. As g

shown in the figure, adding this would increase the duration of a S 1,000 -

thread switch in the operating system by 10 ps to 27 ps. The impact on § 500 L

the operating system would not be negligible, but also not problematic

during normal operation. 00— w

The last example shows the duration of the second stage of the
networked sensor code example from Listing 6.4. It depends heavily on
system calls for formatting of the CoAP response, but still contains
some processing inside the VM. It can be considered a representative
example for business logic on the device. This example takes between
23 us and 72 ps. For business logic programmed outside of the hot

Cortex-M4
ESP32
RISC-V

Figure 6.9: Fletcher32 checksumming
algorithm application.

code path of the operating system itself, the overhead caused here by o5 | |
the VM is rather acceptable and does not impact the performance of 5
the overall system. 5 201
(]
5 15
6.9.1 FEMTO-CONTAINERS WITH MULTIPLE §10*
INSTANCES * s5p
0=

Femto-Containers are optimized to run multiple containers on a single
system in parallel. All state of an instance is kept local to the instance.
Each new instance added takes 624 B of RAM to run, including the VM
stack. The other requirement is that the microcontroller must have a
large enough storage for the all the application images.

Cortex-M4

Figure 6.10: Thread log example
application.

6.10 CHAPTER 6;: SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION Q7

Different instances do not have access to each others resources
by default. They are fully isolated and do not have access to each
others memory, isolated by the memory protection mechanism. One
way provided to communicate between the instances is the shared
key-value store.

Multiple containers can be attached to the same launchpad hook
inside the operating system. It depends on the hook how the return
value from each instance is processed further. This allows for multiple
tenants attaching to the same hook and process similar events.

The results are shown in Table 6.5. For example, the CoAP handler
container, as described by Figure 6.5, requires additional read/write
permissions to two memory regions to handle the CoAP packet, which
increases the RAM overhead by 16 B per region.

Next, the memory required to concurrently host multiple containers
from multiple tenants on the same microcontroller is measured, using
the examples described in section 6.5. As shown previously in Table 6.4,
the minimal default memory footprint used by a Femto-Container
amounts to 624 B, which is for storing the VM stack, housekeeping
memory structures and information about memory regions.

Furthermore, the key-value stores are also in RAM. In this case the total
RAM used by the key value stores and housekeeping for different
tenants was 340 B. Hence, the required RAM memory measured so as
to run the example with 3 containers and 2 tenants is 3.2 KiB. Beyond
these examples, when increasing the number of containers hosting
larger applications (e.g. ~2 000 B), an Arm Cortex-M4 microcontroller
with 256 KiB RAM, the density of containers achievable would be of
~100 instances, next to running the OS.

Bytecode Container RAM Total RAM

Thread Counter 104 B 664 B 768 B
Sensor Reader 496 B 664 B 1160B
CoAP Handler 264 B 696 B 960 B

RIOT Hook Application Hook Overhead

Cortex-M4 427 645 3499 218
ESP32 1607 1773 2325 166
RISC-V 573 784 1508 211

6.10 OVERHEAD ADDED BY HOOKS

One key question is how performance is affected by pre-provisioning
launchpads (hooks) in the RTOS firmware. In Table 6.7 the overhead
caused by adding a hook to the RTOS workflow is measured. This
overhead amounts to /100 clock ticks on all the hardware tested.
Compared to the number of cycles needed for an average task in the
operating system, this impact is low. Furthermore, this overhead
is less than 10 percent of the number of cycles needed to execute

70
60
50
40
30
20
10

us per execution

Cortex-M4
ESP32
RISC-V

Figure 6.11: CoAP response formatter
application.

Table 6.5: RAM required to host
multiple concurrent Femto-Containers
applications.

Table 6.6: Thread switch performance
in clock ticks

6.11.4 CHAPTER 6;: SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION Q8

the logic hosted in a Femto-Container. From this observation, it can
be concluded that, even if this hook is on a very hot code path (as

for the Thread Counter example) the performance loss is tolerable.

Conversely, the perspective of adding many hooks sprinkled in many
places in the RTOS firmware is realistic without incurring significant
performance loss.

6.11 DISCUSSION

6.11.1 VIRTUALISATION VS
POWER-EFFICIENCY

Inherently, virtualisation causes some execution overhead, due to
interpretation of the code. Thus Femto-Containers increase power
consumption for functionality executed within the VM, compared to
native code execution. However, this drawback is mitigated by several
other factors. First, the absolute power consumption overhead may
be negligible, e.g. if the hosted logic is not performing long-lasting,
heavy-duty tasks. Second, network transfer costs, power consumption
and downtime are saved if software updates modify a Femto-Container
instead of the full firmware.

6.112.2 CONTROLLING TENANT PRIVILEGES

Controlling and granting access to specific RTOS resources to different
containers or tenants is a complex challenge. Our design includes a
basic permission system based on pre-provisioned hooks, system calls,
and simple contracts between the hosting engine (on behalf of the OS)
and a given container. Basically: the OS restricts the set of privileges
that can be granted, the container specifies the set of privileges it

requires, and the hosting engine grants the intersection of these sets.

One limitation of our current simplified design is that there is only
one fixed set of privileges possible per hook. In case 2 tenants have
different privileges, a second hook must be made available. Additional
mechanisms would be required to overcome this limitation and/or to
enable dynamic privilege levels.

6.11.3 INSTALLTIME VS EXECUTION TIME

As mentioned before, one limitation due to virtualisation is the inherent
slump in execution speed, compared to native code execution. One
way to remove this overhead is to transpile the portable eBPF bytecode
into native instruction code. This could be done in a single pass to
convert the whole application into native instructions in an installation
step. This can result into a speed-up at the cost of extra install-time
overhead. To avoid the issues describe before on complicating the
run-time security checks, this compilation into native code has to be
done at run-time by the device deploying the code.

Empty Hook with
Hook Application

Cortex-M4 109 1750
ESP32 83 1163
RISC-V 106 754

Table 6.7: Hook overhead in clock ticks
for the thread switch example

6.12 CHAPTER 6. SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION Q9

6.11.4 TENANT-LOCAL STORAGE OF
VALUES

Currently Femto-Containers distinguish between a container-local
value store and a fully device-global value store. This becomes a
limitation when a single tenant needs to share values between VMs,
but needs to keep them private from other tenants. Resolving this issue
requires another level of separation in the value store. A tenant-specific
store that tracks values shared between VMs would be sufficient.
Another option is to specify to which value in the store each VM has
access to. This would allow sharing values with a very specific set of
VMs, while retaining mutual isolation and granting the exact minimal
required permissions.

6.112.5 SECURITY VS LONG-RUNNING
APPLICATION SUPPORT

Whereas rBPF was designed to support only short-lived executions,
Femto-Containers extends support to long-running scripts. With
a Femto-Container, an application can specifically be flagged to
be in the long-running mode of operation. In this case, pre-flight
checks guaranteeing bounded execution (i.e., presence of a return
instruction) are ignored. One such application is shown in Listing 6.3,
looping on a timer call to periodically measure and process the sensor
value - which would not be valid in traditional eBPF One drawback of
Femto-Containers in this mode of operation, is that the presence of
an internal blocking call are not detected, and it is thus possible to
design an application which consumes unlimited processing power
from the device. (Note that this nevertheless not the case with the
event-triggered mode of operation, which has limited-time by design.)

One way to mitigate this issue with long-running scripts, is to enhance
the hosting engine with a mechanism allocating a fair share of the
processing power available to each currently active Femto-Container.
One way to implement this is to only execute a limited number of
instructions per execution, and resume the execution after allowing
other Femto-Containers to run.

6.11.6 FIXED- VS VARIABLE-LENGTH
INSTRUCTIONS

Originally, eBPF scripts are optimized for fast execution on 64-bit
platforms. Compared to other VMs such as Wasm, the resulting
bytecode is relative large. In fact, most of the instructions have bit
fields that are fixed at zero. A possible way to reduce the size of these
scripts is to compress the instructions into a variable size instruction
set, removing these fields from the instructions where possible. This
would create a variable length instruction set based on the eBPF
set. For example the immediate field is not used with half of the
instructions and would reduce the instructions to 32 bits in size when
removed.

6.12 CHAPTER 6;: SANDBOXED FUNCTION EXECUTION FOR RECONFIGURATION 100

6.12 CONCLUSION

In this chapter, | introduce Femto-Containers, a new designed middle-
ware runtime architecture, which enables FaaS capabilities embedded
on heterogeneous low-power loT hardware. Using Femto-Containers,
authorized, third party maintainers of |oT software can deploy and
manage via the network mutually isolated software modules embed-
ded on a microcontroller-based device. | provide an open source
implementation of the Femto-Container runtime, which uses the eBPF
instruction set ported to microcontrollers, as well as integrationin a
common low-power |oT operating system, RIOT. A formally verified
variant of the VM engine is provided with a fault-isolation guarantee
which ensures that RIOT is shielded from arbitrary logic loaded and exe-
cuted in a Femto-Container — and such, without requiring any specific
hardware-based memory isolation mechanism. | then demonstrated
experimentally the performance of the Femto-Container runtime on
the most common 32-bit microcontroller architectures: Arm Cortex-M,
RISC-V, ESP32. | show that Femto-Containers significantly improve
state of the art, by providing FaaS-like capabilities with strong security
guarantees on such microcontrollers, while requiring negligible Flash
and RAM memory overhead (less than 10 %) compared to native
execution.

Femto-Containers is suitable for multiple scenarios and environments
in which constrained microcontroller-based devices are used. For
example, Femto-Containers can be leveraged in a nanosatellite
environment in which measurement and experiment logic is hosted
inside the VM. Together with the SUIT manifest, Femto-Containers
provides a rich FaaS-like environment which can be updated on-
demand. This allows for hosting mission code on the satellite, which
can be modified over-the-air, when it must evolve during the life-time
of the satellite. In chapter 7, this scenario is presented as use case
with SUIT as update mechanism to deploy hosted logic on CubeSat
payloads.

101

CHAPTER 7

CASE STUDY: SECURE SOF TWARE
RECONFIGURATION ON
NANOSATELLITE

The previous chapters described the different building blocks to design
a secure reconfigurable system. One use case for these building blocks
lies within the CubeSat payloads. CubeSats provide tiny rack slots, 0.25
U each, for low-power payloads hosted on the CubeSat.

As the lifetime of these CubeSats is 5 to 10 years, there is a need for up-
dates and reconfigurability of the firmware on these satellite payloads.
In this chapter the ThingSat payload for CubeSats is described, a
real-world use case where building blocks of previous chapters is used.
Based on ThingSat, the Cubedate framework for updating firmware
and mission control modules is described. The LEO environment in
which these CubeSats reside, together with the limited power and
network links, provides a constrained environment requiring careful
design of these components.

This work is based on “Cubedate: Securing Software Updates in Orbit
for Low-Power Payloads Hosted on CubeSats”[6] as presented at the
12th IFIP/IEEE International Conference on Performance Evaluation
and Modeling in Wired and Wireless Networks.

7.1 THINGSAT

7.1.1 SYSTEM ARCHITECTURE DESIGN

Figure 7.1 describes the ThingSat deployment components. It gives an
overview of a typical CubeSat ecosystem, whereby the interaction with
this payload traverses untrusted elements.

LOW-POWER SPACE SEGMENT

The Low-power Space Segment comprises the On-Board Computer
(OBC) and hosted payloads, whom, interconnected via a Controller
Area Network (CAN) bus, which share resources on the CubeSat.

711.0 CHAPTER 7. SECURE SOFTWARE RECONFIGURATION ON NANOSATELLITE 102

LEO (=525 km) polar orbit Cubesat subsystem 4
(4 to 5 passes a day, 30 s to 10 min pass over a Earth location)
OnBoard Computer Thingsat hosted payload
ADCS || - | Power| - uP | RIOT 5
f CcsP : &
: : CAN : &
Microcontroller - > STM32 MCU Y
g
Comm. System - | sx1302/sx1280 radio
e.g. UHF/VHF+S-Band | - | LoRa 868 MHz/2.4 GHz
,,,,,,,,,,,,,,,,,,,,,,, 7 R A
S-Band UHF UL/UD =10 kbps LoRa v
=1 Mbps telemetry, command, control ~1 kbps to 10 kbps
Larger File ~300 kb/day -
/\ N TN S
9 v Y = A s m S
3 -g Comm. System 2 Subsidiary radio 3 § %D
LS e.g. UHF/VHF+S-Band S Ew e.g. LoRa 868 MHz + = =
o £ 7 =L 2.4 GHz aa 3
3 = 4 S 3 g3 5
= E Satellite Operator T a E ThingSat loT device o
— i Ground Stations v m 2 and Ground Station \/ v

Untrusted Part Trusted Part
operated by the cubesat owner operated by the hosted payload owner

Figure 7.1: ThingSat hosted payload: deployed components and architecture.

The OBC provided by the satellite operator consists of a microcontroller
with all its subsystems to operate the CubeSat: Attitude Determination
and Control System (ACDS), communication subsystems (UHF/VHF/S-
band for uplink/downlink and antennas) and power subsystem (Battery
Management, Energy Harvesting with Solar Panels, Auxiliary Power
Supply).

The ThingSat payload designed for this use case is build around an
STM32F405RG microcontroller featuring an ARM Cortex-M4 core and
open source firmware based on RIOT [30]. It embeds both a SX1302
transceiver for communications on the 868MHz band and a SX1280
transceiver for communications on the 2.4GHz band. Furthermore a
corresponding dual-band patch antenna is designed. When active and
using the 868MHz band, the ThingSat payload consumes at 3.3 V:

« 90 mA in standby,
+ 110 mA during a frame reception (RX) and

+ 300 mA during a frame transmission (TX) at the 27dBm maximum
power.

By operating in the milliwatt range, our payload achieves low-power

71.2.0 CHAPTER 7. SECURE SOFTWARE RECONFIGURATION ON NANOSATELLITE 103

consumption what could not have been achieved with a raspberry pi or
without the de-facto low-power LoRa technology.

GROUND SEGMENTS

There are two ground segment elements that communicate with the
ThingSat payload, the SatRevolution ground stations and custom
ThingSat LoRa ground stations.

The SatRevolution Ground Stations are provided by the CubeSat
operator, but not necessarily owned by the CubeSat operator, to
communicate via UHF/VHF with the OBC, and indirectly with the
payload. This can be done directly through a Command & Control
Center, which acts as a broker between payload maintainers and
hosted payload. This communication path provides indirect access to
the payload.

The ThingSat LoRa Ground Stations provide a low cost and simple
ground deployed and maintained which can communicate via LoRa
directly with the ThingSat payload. These stations are based on an
ESP32 microcontroller, and a 2.4GHz SX1280-LoRa transceiver, also
running an open source firmware based on RIOT.

7.1.2 COMMUNICATION CHARACTERISTICS
OVERVIEW

ThingSat payload communicates either directly via Low Power WAN
(LPWAN), or indirectly via the UHF/VHF link provided by the CubeSat’s
OBC. Multiple avenues of communication are available for the ThingSat
payload. It communicates either directly via LPWAN, or indirectly via
the UHF/VHF link provided by the CubeSat’s OBC.

INDIRECT COMMUNICATION CHARACTERISTICS
VIAUHF/VHF

CubeSat-GS communications are typically done on amateur frequency
bands (UHF/VHF) with typically low data rates ranging from 9.6 kbit/s to
100 kbit/s. A polar LEO satellite will typically pass over a given ground
station 2 to 4 times/day, each pass having a communication window of
5min to 10 min. For ThingSat, the CubeSat Operator provides only 2
ground stations, which are both in Europe, communicating with the
CubeSat via a 10 kbit/s UHF/VHF link. Thus, the daily throughput is
roughly 1500 kB, corresponding to 2GS x 2 passes/day x 5-min pass
duration x 10 kbit/s. However, this throughput must be shared between
communications to/from the OBC, for telecommand/telemetry/update,
and to- and from hosted payloads. Therefore in practice, the total
communication budget avail able for ThingSat via the UHF/VHF link is
around 300KB/day.

DIRECT COMMUNICATION SETUP VIALPWAN

ThingSat can communicate directly with LoRa. In principle, although it
is not used as such so far, this communication link could also be used

721 CHAPTER 7. SECURE SOFTWARE RECONFIGURATION ON NANOSATELLITE 104

to transport software updates. The ThingSat payload may act as either:

1. A Sat-loT end-device (ED) that will send LoRA frames to terrestrial
LoRaWAN gateways or a ThingSat ground stations.

2. Anin-orbit LoRa sniffer.
3. Astore-carry-and-forward LoRa gateway.

Patterns 1 and 2 allow to benchmark simple ground-space LoRa links
by computing statistics over multiple sent/received frames. Pattern 3 is
a more complex scenario: the satellite stores packets received from the
Sat-loT end-device carries them and delivers them once LoRa ground
stations are inside the footprint of the satellite.

7.1.3 INTERMITTENT COMMUNICATION
AND POWER SUPPLY

One issue inherent about the setup is that the ThingSat payload is not
constantly powered on. Typically, at any point in time, only one single
hosted payload is powered on. For a 3U, 1U is dedicated to the OBC
and the remaining 2U is available for hosted payloads, 8 payloads slots
of 0.25U in the case of ThingSat. Therefore, on average ThingSat is
powered only 1/8th (12.5 %) of the time, further reduced by other
factors such as mission specificities, regulations, battery level and
others.

7.1.4 HOSTED PAYLOAD UPDATE
REQUIREMENTS

Data exchanges between the Payload Maintainer and ThingSat (Step 5
on Figure 7.2) consist of downlinks: used by ThingSat to send mission
results (radio metadata, frame stats, collected LoRa frames) and
diagnosis data (debug info on failed missions/updates) and uplinks:
used for software updates of two categories:

1. Firmware updates: to fix bugs, add/improve functionality,
typically 200 kB per firmware, 1 firmware/month.

2. Mission updates: to configure scenarios, typically 700 B per
mission scenario, 1 scenario/day.

7.2 SOFTWARE UPDATE
IMPLEMENTATION

7.2.1 SECURITY REQUIREMENTS

The minimal security guarantees aimed for with Cubedate are authen-
ticity and integrity of software updates delivered over the network,
during the lifetime of the satellite mission, approximately 5 to 10 years.
Cubedate must allow for crypto agility, i.e. update the crypto primitives
used to secure update to the satellite while in operation. This need
can be dictated either by cryptography’s evolving state-of-the-art
(implementation/algorithm vulnerabilities are discovered) or by

7.2.3 CHAPTER 7; SECURE SOFTWARE RECONFIGURATION ON NANOSATELLITE 105

3. CubeSat
carries LoRa
packets

2. CubeSat
stores LoRa

packets

4, CubeSat relays

LoRa packets 5. Flrmware & Mission
' towards GS Upload/Result &
ThingSatLoRa Debug Download
GroundStations ‘\ 7
e ! , CubeSat Operator / :
R®) \ GroundStatlons 2 :

CubeSat

Terrestrial

LoRa;IoT Footprint nternet CubeSat Command
end-devices ThingSat erne & Control Center
LoRa Network =38
Server i3
ThingSat CubeSat operator

VHF/UHF ~ ——

LoRa Communications L.
Communications

Figure 7.2: ThingSat in-orbit communication patterns.

the need to transfer the trust anchor to a new entity, for when the
authorized maintainer has changed. Additional guarantees beyond
authenticity/integrity should also be possible with Cubedate, such as
confidentiality, software update replay attacks, or software update
mismatch attacks.

7.2.2 TRUST ANCHOR

Our model is based on a single trust anchor: the secret key from the
single authorized maintainer for the CubeSat hosted payload. There is
no mitigation if this trust anchor used is compromised. It relies on the
maintainers’ ability to keep their private keys secure. Extensions using
a possible hierarchical public key infrastructure are possible but out of
scope for this work.

7.2.3 CUBEDATE SOFTWARE LIFE-CYCLE
PHASES

The basic process used for securing authenticity and integrity of soft-
ware updates is decomposed in six phases shown in Figure 7.3. During
a preliminary, pre-flight phase (Phase 0) the authorized maintainer
for the CubeSat-hosted payload produces and flashes the payload
with commissioning material: a bootloader, the initial firmware, and
authorized crypto material, including a public key, and a cryptographic

7.2.4 CHAPTER 7. SECURE SOFTWARE RECONFIGURATION ON NANOSATELLITE 106

hash function. Once the hosted payload is commissioned it can be sent
to the CubeSat operator of installation in the CubeSat.

Once the CubeSat is in orbit, the hosted payload maintainer can trigger
iterations through cycles of Phases 1 to 5, whereby the authorized
maintainer can build a new software update (Phase 1), hash the update
and sign the hash (Phase 2) then push a network transfer (PUT) towards
the hosted payload via the ground station and the OBC (Phase 3.1). The
next time it wakes up, the hosted payload can then ping and fetch (GET)
the update from the OBC (Phase 3.2), proceed to verify the signature
and the hash (Phase 4), and upon successful verification, install/boot
the new software (Phase 5), otherwise the update is dropped.

Maintainer Host on
(P, Si) Out-of-band CubeSat
Phase 0 Provision Public Key P, hash function
Commision
Phase 1
Build update

Phase 2
Hash & Sign

Phase 3.1 “=~--+|Ground
Network transfer Station |~~-.__PUT

"‘*-\,<___G_|§1:____ Phase 3.2

Fetch update

Phase 4
Auth.: Check sign.
Integrity: Check hash

Phase 5
Check OK? Install.
(Else: log alert)

Figure 7.3: CubeSat hosted payload secure software update process.

7.2.4 SUPPORTING NETWORKTRANSPORT
HETEROGENEITY

This aspect concerns Phase 3.1 and 3.2 in Figure 7.3. Security guarantees
on software updates must remain valid end-to-end. Depending on the
use-case, “end-to-end” spans differently, as depicted for example in
Figure 7.4. In the most complex case tackled in this work, end-to-end
means all the way from the hosted payload software maintainer to
the payload hosted in orbit on the CubeSat. Software updates may
be transported over one or more network links of varying nature
such as either developer-to-ground station link (Internet) or ground
station-to-CubeSat links (UHF/VHF, LoRa...) or intra-CubeSat buses
(CAN, 12C, RS-232...).

Intermittent power supply, combined with orbiting and radio range
limitations impacts the reliance of the network connectivity to/from

7.2.6.0 CHAPTER 7. SECURE SOFTWARE RECONFIGURATION ON NANOSATELLITE 107

the hosted payload: establishing a delay-tolerant path and in-network
data caching might be required. To cope with this wide variety of
network paths and links, including ultra-constrained low-power
elements, different approaches can be envisioned at the network
layer, the transport layer and the application layer. Approaches span
from proprietary solutions to standards such as the low-power IPv6
protocol stack (6LoOWPAN, UDP, CoAP) or experimental stacks such
as information-centric networking which benefits from in-network
caching even with small caches on microcontrollers [84].

Nevertheless, in order to retain generality, Cubedate does not specify
any particular approach at the network, transport and application
layers to enable the delivery of software updates across the network.
Cubedate only aims to guarantee end-to-end security properties for
the software update binaries that are delivered, somehow, over the
network.

&
&,

\\ ‘/ ——
Hosted O\BC Ground Hosted Payload
Payload Station Maintainer

End-to-End CubeSat Host Figure 7.4: CubeSat hosted payload

software update security end-to-end.

7.2.5 SUPPORTING UPDATED SOFTWARE
HETEROGENEITY

This aspect concerns both Phase 1 and Phase 5 in Figure 7.3. As seen in
subsection 7.2.3, software updates may be of various nature and
size. Cubedate aims to support the same mechanism, workflow and
guarantee to update the CubeSat (1) firmware updates, (2) mission
scenario files and (3) runtime configuration files.

For this reason, choose not to rely on specialized approaches such as
DFU (Device Firmware Update [33]) which assumes that the software is
firmware and that the device is connected directly via some local bus
connection (e.g. USB).

Instead, the aim is to combine the use of generic and standard metadata
characterizing software updates and state-of-the-art cryptographic
primitives applicable on most low-power microcontrollers and a large
variety of low-power networks, as described below.

7.2.6.0 CHAPTER 7. SECURE SOFTWARE RECONFIGURATION ON NANOSATELLITE 108

7.2.6 LOW-POWEREND-TO-END SECURITY
USING SUIT

Cubedate leverages the SUIT manifest [3], an updated format as
presented in chapter 4. The Cubedate software update binary itself can
be either encapsulated in the SUIT manifest, or transferred separately
based on the URI provided in the manifest. For instance, the metadata
includes a sequence number (preventing unwanted rollbacks), the
expected device type (preventing software mismatch), the SHA-256
digest of the software update binary and of the manifest, and the
Ed25519 digital signature of the manifest (the metadata). As such,
using Cubedate, software updates for payload hosted on CubeSats
mitigate attacks including:

TAMPERED SOFTWARE UPDATE ATTACKS

An attacker may try to update the loT device with a modified and
intentionally flawed software image. To counter this threat, Cubedate
uses digital signatures on a hash of the image binary and the metadata
to ensure integrity of both the firmware and its metadata.

UNAUTHORIZED SOFTWARE UPDATE ATTACKS

An unauthorized party may attempt to update the loT device with
modified image. Using digital signatures and public key cryptography,
Cubedate ensures that only the authorized maintainer (holding the
authorized private key) will be able to update the device.

SUPPORTING CRYPTO AGILITY

The first level of crypto agility enabled by Cubedate uses flexibility
provided by the SUIT standard specification: while keeping the same
metadata and workflow, diverse crypto primitives backends can be
used. For instance, to upgrade from pre- to post-quantum security,
digital signature performed with Ed25519 (elliptic curve crypto), can be
swapped for hash-based signatures, such as HSS-LMS as described in
chapter 3.

The second level of crypto agility enabled by Cubedate leverages a
dedicated embedded runtime architecture: on the one hand, the
software update manager (implementing SUIT-related operations) is
placed in the firmware image itself. On the other hand, cryptographic
operations are performed in software only.

Thus, changing the trust anchor stored is as simple as swapping a public
key in the next firmware’s update manager. Authorization to update
the firmware can thus be easily delegated to another maintainer, who
can take over the production and the roll out of authorized updates.
Furthermore, the update manager in the next firmware image could
implement and use upgraded cryptographic primitives.

731 CHAPTER 7; SECURE SOFTWARE RECONFIGURATION ON NANOSATELLITE 109

GUARANTEES BEYOND
AUTHENTICITY/INTEGRITY

Cubedate may also guarantee confidentiality by optionally encrypting
software updates transmitted over the network. It is performed
using the encrypt/decrypt mechanism provided by the SUIT specifica-
tions [164], using a symmetric cryptographic key commissioned in
the update manager by the authorized maintainer. Confidentiality
can mitigate additional cyberattacks leveraging analysis of CubeSat
firmware/software binaries.

Going beyond authenticity, integrity and confidentiality guarantees for
software updates delivered over the network, using Cubedate also
mitigates other attacks including the reply attack and software update
mismatch attack vectors covered by SUIT as described in chapter 4

Table 7.1: Cubedate implementa-
tion: memory flash footprint of the
ThingSat firmware with and without the
Cubedate component.

7.3 PERFORMANCE EVALUATION

In the following, code measurements where generated compiling with
ARM GCC 10.2.1, optimized for code size. As code base, RIOT release

ThingSat +Cubedate

2022.01 and SUIT configured with Ed25519 digital signatures provided . 8?62 p—
by the C25519 cryptq library is used, as this library has a particular Crypto 7386 13760
small memory footprint [3]. CoAP 2192 1632
csp 11771 12653

7.3.1 MEMORY FOOTPRINT OVERHEAD U o
=k LoRaGW 45688 45688
To evaluate the RAM and Flash footprint of our Cubedate implementa- Firmware 108881 114088
tion, it is applied to the ThingSat use-case, compiled for the hosted Total 184680 204008

payload hardware described in subsection 7.1.1. Table 7.2: Cubedate implementa-

tion: memory RAM footprint of the
ThingSat firmware with and without the
Cubedate component.

In Table 7.1 and Table 7.2, the RAM and Flash memory requirements for
a ThingSat firmware with/without Cubedate-compliant updates are
compared. It is observed that Cubedate requires a memory budget of

=4 KiB of RAM and =19 KiBof Flash, which represents roughly a 10 % ThingSat ~ +Cubedate
increase in the total RAM and Flash memory budget for ThingSat. CAN 10774 10774
. . N . Crypt 633 64
+ ThingSat refers to the ThingSat payload application with no Cgippo 1024 1024
software updates support CsP 8541 8541
)) . SuIT 0 3200
+ Cubedate implementation of the Cubedate architecture on the LoRaGW 22300 22300
ThingSat payload Firmware 7008 8225
« CAN stack as well as low level interface Total 20280 54128

+ Cryptoincludes all cryptographic algorithms such as digest
algorithm, digital signature, Elliptic curve with bignum code, as
well as pseudo-random number generator

Table 7.3: Cubedate implementation:
SUIT metadata size.

Component Size

+ CoAP protocol library (CoAP endpoint handler stack excluded) Sequence Number 4
. . Manifest Digest 32

« CSP (Cube Sat Protocol) network stack to communicate with the Data Digest 32
OBC. Identifiers 32
Data-URI 64

+ LoRa GW includes the sx1302 driver as well as the LoRa gateway Authentication 64
code Other 96
Total 324

7.4.3 CHAPTER 7. SECURE SOFTWARE RECONFIGURATION ON NANOSATELLITE 110

+ SUIT encompasses all components enabling retrieval and in-
stallation of suit data (fw or other), this include e.g. the CoAP
endpoint stack.

+ Firmware: application specific code related to the CubeSat
Payload excluding the LoRa gateway

7.3.2 NETWORKTRANSFER OVERHEAD

On the UHF/VHF link at 1kb/s, the additional network transfer time
induced by the Cubedate firmware size overhead (19KB) is roughly 15
seconds. This overhead is reasonable, but non-negligible considering
that a connection to the CubeSat is segmented in time windows of
=300 seconds.

Next, in Table 7.3 a more detailed look at the metadata, the SUIT
manifest, used to secure Cubedate software updates for ThingSat is
given. As is visible, the metadata including all CBOR/COSE formatting,
digests (SHA-256 hashes) and authentication data (Ed25519 signature)
amounts to =330 B. The metadata overhead thus incurs negligible
overhead, an increase of +0.15 %, in case of a ThingSat firmware
update (of size 200KB on average, recall subsection 7.2.3). However,
for smaller software update such as updating a mission scenario
(average size 7T00B) the metadata overhead is significant (almost +50%).
Nevertheless, on the UHF/VHF link at 1kb/s, this overhead remains
negligible in terms of additional network transfer time.

7.4 DISCUSSION

7.4.1 PORTABILITY

Bolted on top of RIOT, our Cubedate implementation works out-of-
the-box (or is trivially portable) on a very wide variety of low-power
hardware built on Cortex-M microcontrollers: the bulk of the 200+
boards supported by RIOT. However, additional work would be needed
to support other hardware based on different 32-bit microcontroller
architectures (e.g. RISC-V).

7.4.2 NETWORKSTACKSIMPLIFICATION &
STANDARDIZATION

The use of CSP was mandated by the CubeSat operator. The purpose of
CSP was to provide an ultra-low footprint equivalent of the IP protocol
stack for CubeSats with legacy (8-bit) microcontrollers. However, on
modern (32-bit) microcontrollers such as those used in ThingSat,
this approach is can be discussed. More widely spread standard
alternatives to CSP seems possible for a similar “price”. For example,
RIOT’s default low-power IPv6 (6LOWPAN) stack used with static routing
has a footprint in RAM/Flash memory that is comparable to libCSP
memory footprint. The 6LoWPAN stack could run directly on the CAN
bus or on LoRa (see 6loCAN [168] and SCHC [120]).

75 CHAPTER 7; SECURE SOFTWARE RECONFIGURATION ON NANOSATELLITE 111

7.4.3 ALTERNATIVE CRYPTOGRAPHIC
PRIMITIVES

In the experimental evaluation, Ed25519 (elliptic curve cryptography)
digital signature providing 128-bit pre-quantum security is used. One
can consider either alternative primitives, while remaining compliant
with Cubedate and the SUIT standard. One compromise to significantly
decrease network transfer and memory footprint with Cubedate is to
use the symmetric Hash-based Message Authentication Code (HMAC)
instead of digital signatures for authentication. Another option would
be to upgrade security to 128-bit post-quantum security by using
hash-based signature instead of Ed25519.

7.5 CONCLUSION

As the space race intensifies, rises the need for state-of-the-art security
to protect software updates on multi-tenant CubeSat in orbit. In this
chapter, | present a corresponding case-study: ThingSat, a low-power
payload, hosted on a CubeSat operated by a separate entity, currently
orbiting. Based on the ThingSat payload, a framework achieving strong
security guarantees and low overhead, for continuous deployment
of software over the air on multi-tenant CubeSat is designed called
Cubedate. Cubedate provides a full update environment for both full
firmware updates as well as the transfer of mission script file for VM
execution. The open source implementation of Cubedate provided and
evaluated for ThingSat was built to be reusable on a wide variety of
low-power CubeSat hardware.

With the implementation here | show how SUIT and the other compo-
nents presented in this work can be used to maintain and adapt the
logic running as CubeSat payload. Mission logic can be adapted on
the fly via the SUIT updates and can potentially be isolated inside a
Femto-Container, allowing third party contributors to run mission code
on the ThingSat platform.

CHAPTER 8
CONCLUSION

Software reconfiguration, while ubiquitous on desktop and server
systems, is fledgling on loT devices. The challenges associated with the
constrained nature of the devices and network links hamper the design
of solutions. This thesis presents a number of solutions to address
these challenges. This thesis presented a number of novel solutions
enabling efficient software reconfiguration on resource-constrained
devices, at several levels of the embedded software stack. Compared
to prior work, these contributions offer a more future-proof and
open-source implementation for the smallest of devices in the field.

8.1 SUMMARY

As communication between constrained devices and management
systems needs to be secured against malicious attacks, cryptographic
primitives are required as base for any communication. For this
purpose, chapter 3 provided a comparative evaluation state-of-the-art
pre-quantum digital signatures with promising post-quantum digital
signature algorithms. The benchmarks use real world hardware
spanning a set of different 32 bit architectures. Demonstrated is the
additional performance cost involved with the current post-quantum
signature algorithms. While not all new post-quantum algorithms are
able to run on all hardware, sufficient algorithms are available to have

candidates available within the constraints around embedded devices.

Digital signature algorithms can be applied to secure firmware updates
against tampering and a variety of other attack vectors. For this
purpose in chapter 4, the design and evaluation of an open firmware
update manifest standard with respect to current firmware called
SUIT is addressed. While secure updates on constrained devices
are not trivial and must protect against numerous attack vectors, as
well as ensure a design suitable for constrained devices, the SUIT
manifest specification manages to achieve these goals. The design
of the manifest, leveraging both CBOR and COSE, achieves a small
size with to the firmware. This ensures a low overhead on both the

network links to the devices and the constrained devices themselves.

Demonstrated is that resource overhead of the implementation is
sufficiently low that standards-compliant firmware updates can be
provided on microcontrollers with memory as low as 32 kB of RAM and
128 kB of flash. This provides a fundamental and open building block

112

81

towards securing the loT ecosystem against future vulnerabilities. The
above properties, combined with the open source implementation
| published and integrated in the RIOT operating system, provide
a fundamental building block towards securing the loT ecosystem
against future vulnerabilities.

The SUIT specification itself is concerned primarily with the secure
delivery of firmware updates However not all updates require a full
firmware update to patch required functionality. Therefore, in chapter 5
presented, a new VM optimized for constrained devices is proposed,
based on the popular eBPF virtual machine (VM) in the Linux kernel.
rBPF provides a tiny register-based VM, which when employed for some
code, incurs negligible memory overhead compared to native execution
of this code in the host OS. While extra overhead is added by execution
of software modules inside rBPF, the code executed is isolated within
the VM and can not influence the memory outside the VM without
specific permissions. Furthermore rBPF does not rely on any hardware
security mechanisms for the memory isolation, it is portable across a
wide range of architectures. Experimental comparative evaluation
against a WebAssembly runtimes on microcontrollers shows that
rBPF is a promising approach to isolate small software modules on
constrained devices. While rBPF is shown to be slower than the fastest
WebAssembly runtimes on microcontrollers, the overhead when
adding rBPF to existing applications is only around 10 %, significantly
less than other VMs.

Building on top of the rBPF virtual machine (VM), chapter 6 then
presented a new middleware runtime architecture design specifically
for constrained devices: Femto-Containers Femto-Containers provides
a FaaS-like capabilities environment for constrained embedded devices,
allowing modular and multi-tenant execution of small isolated software
modules. Several implementation have been published as open
source, including an implementation of a formally verified hosting
engine providing fault-isolation guarantees (in collaboration with
formal verification experts). With this, Femto-Container provides an
isolated runtime without specific hardware requirements for security.
Experimental benchmarks are provided on common microcontroller
architectures to demonstrate the FaaS-like capabilities of Femto-
Container and the negligible flash and RAM requirements added by
Femto-Container.

As demonstrating case-study, the Cubedate framework with ThingSat
for updating a low-power payload hosted on CubeSats is provided in
chapter 7. Last but not least, chapter 7. presents Cubedate, a novel
framework for strong security guarantees and low network transfer
overhead for continuous deployments of software modules in the
challenging environment of CubeSats on Low-Earth Orbit (LEO). To
achieve this, Cubedate applies the results of chapters 4 to 6 to this
use-case. By combining secure software updates with SUIT, rBPF
virtualisation and Femto-Containers, Cubedate enables convenient
updates of not only firmwares but also individual satellite mission
files hosted in Femto-Containers. This demonstrates and validates
concretely that, when used together, the components of this thesis

CHAPTER 8; CONCLUSION

113

8.2

improve the state-of-the-art by providing a set of secure mechanisms
for managing, isolating and executing firmware modules on tiny
constrained devices.

Together the components of this thesis improve the state-of-the-art by
providing a set of secure mechanisms for managing, isolating and
executing firmware modules on tiny constrained devices.

8.2 PERSPECTIVES

Concerning post-quantum digital signatures benchmarked, while
most options are possible to deploy on the constrained devices used,
none of the options match the performance of the pre-quantum
options. While these algorithms perform sufficiently to be standardized
by NIST, when considering them in a constrained scenario their
attractiveness is lacking Each post-quantum digital signature algorithm
requires some concession, either on the signature size or the required
memory. Further exploration for different algorithms more suitable
for embedded devices can save considerable memory or network
transfer overhead. For example, that the NIST competition is still
on-going, collaborative work with cryptographers to develop signature
algorithms with signature verification suitable for constrained devices,
at anincrease in resource consumption on the signature generation
side, would be beneficial here.

SUIT manifest as implemented is sufficient for transferring payloads in
a secure way to their target device. The work on the SUIT manifest is
not frozen however, with extensions and new options in the process of
standardization by the IETF. One particular attractive option is the
full firmware encryption, extending the security guarantees already
provided with confidentiality. A further advantage is the shift to
symmetric cryptography, mitigating the need for the costly signature
verification on the manifest. Furthermore, the SUIT specification in its
current form provides a huge amount of flexibility. A more constrained
variant could encompass a larger device base, while still providing the
security level and main use case of firmware updates.

The rBPF VM with Femto-Container on top provide a rich and secure
Faa$S environment. Multiple avenues of improvements are available on
these technologies, as discussed in chapter 5 and chapter 6. Direct
improvements to the rBPF VM are possible to increase the performance
and decrease the application size. Femto-Container itself is portable

across many different operating systems and device architectures.

However, it heavily relies on the integration into the host operating
system, where providing bindings and facilities of the operating system
to Femto-Container is often manual work by developers. Investigating
how this integration can be simplified to decrease the burden on the
developers can in turn improve the user experience for developers
working on Femto-Container applications. One particular avenue for
exploration would be the automatic generation of bindings to the
operating system and the translation of data from the Femto-Container
VM to host operating system and vice versa.

CHAPTER 8: CONCLUSION

114

8.2

Altogether, the challenge of long-term maintenance of constrained loT
devices in the field persists. While this thesis addresses a number of
challenges and provides solutions, more work is needed to provide a
solution for these devices. A holistic solution at large scale is required
to address these challenges in an encompassing way [47]. This requires
a solution for constrained device management where software updates
and reconfiguration is provided as core aspect. More work is needed to
provide a holistic solution, at large scale. For instance, the lack of

convenience of available software update back-ends is a bottleneck.

Separate recent work such as [47] also hints at this lack, and points

towards solutions that are similar to what | proposed in my thesis:

combining software virtualization over HAL and a general-purpose
0S. Allin all, a paradigm shift is still to happen, whereby the update
and reconfiguration software components of constrained devices
is no longer an afterthought or an extra feature, but instead a core
feature, always-required and always-available on such devices or fleets
thereof.

CHAPTER 8: CONCLUSION

115

APPENDIX A

BIBLIOGRAPHY

(1]

(3]

(4]

(5]

(6]

(7]

Koen Zandberg and Emmanuel Baccelli. “Minimal Virtual Machines on loT Microcontrollers: The Case
of Berkeley Packet Filters with rBPF”. In: 9th IFIP International Conference on Performance Evaluation
and Modeling in Wireless Networks, PEMWN 2020, Berlin, Germany, December 1-3, 2020. |IEEE, 2020,
pp. 1-6.D0I: 10.23919/PEMWN50727.2020.9293081. URL: https://doi.org/10.23919/
PEMWN50727.2020.9293081.

Koen Zandberg, Emmanuel Baccelli, Shenghao Yuan, Frédéric Besson, and Jean-Pierre Talpin. “Femto-
containers: lightweight virtualization and fault isolation for small software functions on low-power loT
microcontrollers”. In: Middleware "22: 23rd International Middleware Conference, Quebec, QC, Canada,
November 7 - 11, 2022. Ed. by Paolo Bellavista, Kaiwen Zhang, Abdelouahed Gherbi, Saurabh Bagchi,
Marta Patifio, Giuseppe Di Modica, and Julien Gascon-Samson. ACM, 2022, pp. 161-173. pol:
10.1145/3528535.3565242. URL: https://doi.org/10.1145/3528535.3565242.
Koen Zandberg, Kaspar Schleiser, Francisco Acosta Padilla, Hannes Tschofenig, and Emmanuel
Baccelli. “Secure Firmware Updates for Constrained loT Devices Using Open Standards: A Reality
Check”. In: IEEE Access 7 (2019), pp. 71907-71920. pOI: 10.1109/ACCESS.2019.2919760. URL:
https://doi.org/10.1109/ACCESS.2019.2919760.

Gustavo Banegas, Koen Zandberg, Emmanuel Baccelli, Adrian Herrmann, and Benjamin Smith.
“Quantum-Resistant Software Update Security on Low-Power Networked Embedded Devices”. In:
Applied Cryptography and Network Security - 20th International Conference, ACNS 2022, Rome, Italy,
June 20-23, 2022, Proceedings. Ed. by Giuseppe Ateniese and Daniele Venturi. Vol. 13269. Lecture Notes
in Computer Science. Springer, 2022, pp. 872-891. pD0I: 10.1007/978-3-031-09234-3_43. URL:
https://doi.org/10.1007/978-3-031-09234-3_43

Zhaolan Huang, Koen Zandberg, Kaspar Schleiser, and Emmanuel Baccelli. “RIOT-ML: toolkit
for over-the-air secure updates and performance evaluation of TinyML models”. In: Annals of
Telecommunications (2024), pp. 1-15.

Francois-Xavier Molina, Emmanuel Baccelli, Koen Zandberg, Didier Donsez, and Olivier Alphand.
“Cubedate: Securing Software Updates in Orbit for Low-Power Payloads Hosted on CubeSats”. In:
12th IFIF/IEEE International Conference on Performance Evaluation and Modeling in Wired and
Wireless Networks, PEMWN 2023, Berlin, Germany, September 27-29, 2023. IEEE, 2023, pp. 1-6.
DOI: 10 .23919 / PEMWN58813.2023.10304910. URL: https://doi.org/10.23919/
PEMWN58813.2023.10304910.

Brendan Moran, Hannes Tschofenig, Henk Birkholz, Koen Zandberg, and @yvind Renningstad. A Concise
Binary Object Representation (CBOR)-based Serialization Format for the Software Updates for Internet of
Things (SUIT) Manifest. Internet-Draft draft-ietf-suit-manifest-25. Work in Progress. Internet Engineering
Task Force, Feb.2024. 101 pp. URL: https://datatracker.ietf.org/doc/draft-ietf-
suit-manifest/25/.

Shenghao Yuan, Frédéric Besson, Jean-Pierre Talpin, Samuel Hym, Koen Zandberg, and Emmanuel
Baccelli. “End-to-End Mechanized Proof of an eBPF Virtual Machine for Microcontrollers”. In:
Computer Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August 7-10,
2022, Proceedings, Part Il. Ed. by Sharon Shoham and Yakir Vizel. Vol. 13372. Lecture Notes in

A.0

[19]
[20]

[21]

[23]
[24]

[25]

[29]

APPENDIX A: BIBLIOGRAPHY 117

Computer Science. Springer, 2022, pp. 293-316. DOI: 10.1007/978-3-031-13188-2_15. URL:
https://doi.org/10.1007/978-3-031-13188-2_15.

Schleiser, Kaspar and Zandberg, Koen and Abadie, Alexadre and Molina, Francois-Xavier. sys/suit:
initial support for SUIT firmware updates. 2019. URL: https://github.com/RIOT-0S/RIOT/
pull/11818.

Zandberg, Koen. libcose: Constrained node COSE library. 2022. URL: https://github.com/
bergzand/libcose.

Zandberg, Koen. NanoCBOR: CBOR library aimed at heavily constrained devices. 2024. URL: https:
//github.com/bergzand/NanoCBOR.

Zandberg, Koen. rBPF: Initial include of small virtual machine. 2021. urL: https://github.com/
RIOT-0S/RIOT/pull/19372.

Zandberg, Koen. SUIT: Introduction of a payload storage API for SUIT manifest payloads. 2020. URL:
https://github.com/RIOT-0S/RIOT/pull/15110.

Zandberg, Koen and Baccelli, Emmanuel. Femto-Containers: Femto-Containers RIOT Implementation
& Hands-on Tutorials. 2022. URL: https: //github. com/ future-proof-iot/Femto-
Container_tutorials.

Francisco Javier Acosta Padilla et al. “The Future of 10T Software Must be Updated”. In: IAB Workshop
on Internet of Things Software Update (IoTSU). 2016.

Adafruit Industries. CircuitPython - The easiest way to program microcontrollers. 2024. URL: https:
//circuitpython.org/.

Cedric Adjih et al. “FIT loT-LAB: A Large Scale Open Experimental loT Testbed”. In: Proc. of IEEE WF-IoT.
Dec. 2015.

Alexandru Agache, Marc Brooker, Alexandra lordache, Anthony Liguori, Rolf Neugebauer, Phil Piwonka,
and Diana-Maria Popa. “Firecracker: Lightweight virtualization for serverless applications” In: 17th
USENIX symposium on networked systems design and implementation (NSDI 20). 2020, pp. 419-434.
ZigBee Alliance et al. Zigbee Specification. 2006.

Amazon Web Services. FreeRTOS - Market leading RTOS (Real Time Operating System) for embedded
systems with Internet of Things extensions. 2024. URL: https://www. freertos.org/.
Christian Amsiiss, John Preul} Mattsson, and Goran Selander. Constrained Application Protocol (CoAP):
Echo, Request-Tag, and Token Processing. RFC 9175. Feb. 2022. pol: 10.17487 /RFC9175. URL:
https://www.rfc-editor.org/info/rfc9175.

Christian Amsiiss, Zach Shelby, Michael Koster, Carsten Bormann, and Peter Van der Stok. Constrained
RESTful Environments (CoRE) Resource Directory. RFC 9176. Apr. 2022. b0OI: 10.17487 /RFC9176. URL:
https://www.rfc-editor.org/info/rfc9176.

Andrew W Appel. Program logics for certified compilers. Cambridge University Press, 2014.

ARM. Arm Cortex-M Processor Comparison Table. 2023. URL: https://developer.arm.com/
documentation/102787/0300/.

Faisal Aslam, Luminous Fennell, Christian Schindelhauer, Peter Thiemann, Gidon Ernst, Elmar
Haussmann, Stefan Riihrup, and Zastash A Uzmi. “Optimized java binary and virtual machine for tiny
motes”. In: Distributed Computing in Sensor Systems: 6th IEEE International Conference, DCOSS 2010,
Santa Barbara, CA, USA, June 21-23, 2010. Proceedings 6. Springer. 2010, pp. 15-30.

N Asokan, Thomas Nyman, Norrathep Rattanavipanon, Ahmad-Reza Sadeghi, and Gene Tsudik.
“ASSURED: Architecture for secure software update of realistic embedded devices”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 37.11 (2018), pp. 2290-2300.
Atomic Object. heatshrink: data compression library for embedded/real-time systems. Dec. 2015. URL:
https://github.com/atomicobject/heatshrink.

Emmanuel Baccelli, Joerg Doerr, Shinji Kikuchi, Francisco Acosta Padilla, Kaspar Schleiser, and
lan Thomas. “Scripting over-the-air: towards containers on low-end devices in the internet of things”.
In: 2018 IEEE International Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops). IEEE. 2018, pp. 504-507.

Emmanuel Baccelli, Joerg Doerr, Shinji Kikuchi, Francisco Acosta Padilla, Kaspar Schleiser, and
lan Thomas. “Scripting over-the-air: towards containers on low-end devices in the internet of things”.

A.0

[30]

[32]
[33]
[34]
[35]

[36]

APPENDIX A: BIBLIOGRAPHY 118

In: 2018 IEEE International Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops). IEEE. 2018, pp. 504-507.

Emmanuel Baccelli, Cenk Glindogan, Oliver Hahm, Peter Kietzmann, Martine Lenders, Hauke
Petersen, Kaspar Schleiser, Thomas C. Schmidt, and Matthias Wahlisch. “RIOT: An Open Source
Operating System for Low-End Embedded Devices in the 1oT”. In: IEEE Internet Things J. 5.6 (2018),
pp. 4428-4440. poI: 10.1109/JI0T.2018.2815038. URL: https://doi.org/10.1109/
JIOT.2018.2815038.

Gustavo Banegas and Daniel J. Bernstein. “Low-Communication Parallel Quantum Multi-Target
Preimage Search”. In: Selected Areas in Cryptography - SAC 2017 - 24th International Conference,
Ottawa, ON, Canada, August 16-18, 2017, Revised Selected Papers. Ed. by Carlisle Adams and
Jan Camenisch. Vol. 10719. Lecture Notes in Computer Science. Springer, 2017, pp. 325-335.
DOI: 10.1007/978-3-319-72565-9_16. URL: https://doi.org/10.1007/978-3-319-
72565-9_16.

Dmitry Bankov, Evgeny Khorov, and Andrey Lyakhov. “On the Limits of LoRaWAN Channel Access”. In:
2016 International Conference on Engineering and Telecommunication (EnT). 2016, pp. 10-14. DOI:
10.1109/EnT.2016.011.

J Beningo. Update firmware in the field using a microcontrollers dfu mode. 2018.

Daniel J Bernstein et al. “ChaCha, a variant of Salsa20”. In: Workshop record of SASC. Vol. 8. 1. Citeseer.
2008, pp. 3-5.

Daniel J Bernstein. “Curve25519: new Diffie-Hellman speed records”. In: International Workshop on
Public Key Cryptography. Springer. 2006, pp. 207-228.

Daniel J Bernstein. “The Poly1305-AES message-authentication code”. In: International workshop on
fast software encryption. Springer. 2005, pp. 32-49.

Daniel J Bernstein and Tanja Lange. “Post-quantum cryptography”. In: Nature 549.7671 (2017),
pp. 188-194.

Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche. “Keccak”. In: Annual international
conference on the theory and applications of cryptographic techniques. Springer. 2013, pp. 313-314.
Ward Beullens. “Improved cryptanalysis of UOV and rainbow”. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer. 2021, pp. 348-373.

Martin Bjorklund. The YANG 1.1 Data Modeling Language. RFC 7950. Aug. 2016. DOI: 10.17487/
RFC7950. URL: https://www.rfc-editor.org/info/rfc7950.

Carsten Bormann, Mehmet Ersue, and Ari Keranen. Terminology for Constrained-Node Networks.
RFC 7228. May 2014. D01: 10.17487/RFC7228. URL: https://www.rfc-editor.org/info/
rfcv228.

Carsten Bormann and Paul E. Hoffman. Concise Binary Object Representation (CBOR). RFC 7049. Oct.
2013.D01: 10.17487/RFC7049. URL: https://www.rfc-editor.org/info/rfc7049.
Carsten Bormann and Paul E. Hoffman. Concise Binary Object Representation (CBOR). RFC 8949. Dec.
2020.D01: 10.17487/RFC8949. URL: https://www.rfc-editor.org/info/rfc8949.
Carsten Bormann, Simon Lemay, Hannes Tschofenig, Klaus Hartke, Bill Silverajan, and Brian Raymor.
CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets. RFC 8323. Feb. 2018. pot:
10.17487/RFC8323. URL: https://rfc-editor.org/rfc/rfc8323.txt.

Carsten Bormann and Zach Shelby. Block-Wise Transfers in the Constrained Application Protocol (CoAP).
RFC 7959. Aug. 2016. DOI: 10.17487 /RFC7959. URL: https://www.rfc-editor.org/info/
rfc7959.

Guillaume Bouffard and Léo Gaspard. “Hardening a Java Card Virtual Machine Implementation with
the MPU”. In: Symposium sur la sécurité des technologies de I'information et des communications
(SSTIC). 2018.

Conner Bradley and David Barrera. “Escaping Vendor Mortality: A New Paradigm for Extending loT
Device Longevity”. In: Proceedings of the 2023 New Security Paradigms Workshop, NSPW 2023,
Segovia, Spain, September 18-21, 2023. ACM, 2023, pp. 1-16.D0I: 10.1145/3633500.3633501.
URL: https://doi.org/10.1145/3633500.3633501.

A.0

[48]

[49]
[50]

[54]
[55]

[56]

[63]
[64]

APPENDIX A: BIBLIOGRAPHY 119

Broadband Forum. TR-069, CPE WAN Management Protocol Version 1.4. Mar. 2018. URL: https:
//www.broadband-forum.org/technical/download/TR-069.pdf.

Broadband Forum. User Services Platform. URL: https://usp.technology/.

Niels Brouwers, Peter Corke, and Koen Langendoen. “Darjeeling, a Java compatible virtual machine
for microcontrollers”. In: Proceedings of the ACM/IFIR/USENIX Middleware’08 Conference Companion.
2008, pp. 18-23.

Stephen Brown and Cormac J Sreenan. “Software updating in wireless sensor networks: A survey and
lacunae”. In: Journal of Sensor and Actuator Networks 2.4 (2013), pp. 717-760.

Bytecode Alliance. WebAssembly Micro Runtime (WAMR). Oct. 2020. URL: https://github.com/
bytecodealliance/wasm-micro-runtime.

Cadence. Xtensa LX Processor Platform. 2024. URL: https: //www.cadence.com/en_US/
home /tools/silicon-solutions/compute-ip/tensilica-xtensa-controllers-
and-extensible-processors/xtensa-1lx-processor-platform.html.

Cesanta Software. mJS - a new approach to embedded scripting. Jan. 24, 2017. URL: https:
//mongoose-os.com/blog/mjs—a-new-approach-to-embedded-scripting/.
Cesanta Software. Mongoose OS - reduce IoT firmware development time up to 90%. 2024. URL:
https://mongoose-os.com/.

André Chailloux, Maria Naya-Plasencia, and André Schrottenloher. “An Efficient Quantum Collision
Search Algorithm and Implications on Symmetric Cryptography”. In: Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part Il. Ed. by Tsuyoshi Takagi
and Thomas Peyrin. Vol. 10625. Lecture Notes in Computer Science. Springer, 2017, pp. 211-240.
DOI: 10.1007/978-3-319-70697-9_8. URL: https://doi.org/10.1007/978-3-319-
T70697-9_8.

Rym Chéour, Sabrine Khriji, Olfa Kanoun, et al. “Microcontrollers for IoT: optimizations, computing
paradigms, and future directions”. In: 2020 IEEE 6th World Forum on Internet of Things (WF-1oT). IEEE.
2020, pp. 1-7.

Inc. Cisco Systems. cisco/hash-sigs: A full-featured implementation of of the LMS and HSS Hash Based
Signature Schemes from draft-mcgrew-hash-sigs-07. 2024. URL: https://github.com/cisco/
hash-sigs/.

Robert Davis, Nick Merriam, and Nigel Tracey. “How embedded applications using an RTOS can stay
within on-chip memory limits”. In: 12th EuroMicro Conference on Real-Time Systems. Citeseer. 2000,
pp. 71-77.

Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin Wesolowski. “SQISign:
compact post-quantum signatures from quaternions and isogenies”. In: Advances in Cryptology-
ASIACRYPT 2020: 26th International Conference on the Theory and Application of Cryptology and
Information Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part | 26. Springer.
2020, pp. 64-93.

Fabrizio De Santis, Andreas Schauer, and Georg Sigl. “ChaCha20-Poly1305 authenticated encryption
for high-speed embedded IoT applications”. In: Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017. |IEEE. 2017, pp. 692-697.

Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Analysis of SHA-512/224 and SHA-
512/256". In: Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on the Theory and
Application of Cryptology and Information Security, Auckland, New Zealand, November 29 - December 3,
2015, Proceedings, Part Il. Ed. by Tetsu Iwata and Jung Hee Cheon. Vol. 9453. Lecture Notes in
Computer Science. Springer, 2015, pp. 612-630. DOI: 10.1007/978-3-662-48800-3_25. URL:
https://doi.org/10.1007/978-3-662-48800-3_25.

Krishna Doddapaneni et al. “Secure FoTA object for oT”. In: IEEE LCN Workshops. 2017.

Adam Dunkels, Niclas Finne, Joakim Eriksson, and Thiemo Voigt. “Run-time dynamic linking for
reprogramming wireless sensor networks”. In: Proceedings of the 4th international conference on
Embedded networked sensor systems. 2006, pp. 15-28.

A.0

[65]

APPENDIX A: BIBLIOGRAPHY 120

Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. “Contiki-a lightweight and flexible operating
system for tiny networked sensors”. In: 29th annual IEEE international conference on local computer
networks. |IEEE. 2004, pp. 455-462.

Morris J Dworkin. “SHA-3 standard: Permutation-based hash and extendable-output functions” In:
(2015).

Joshua Ellul and Kirk Martinez. “Run-time compilation of bytecode in sensor networks”. In: 2010
Fourth International Conference on Sensor Technologies and Applications. IEEE. 2010, pp. 133-138.
European Commission. Regulation Of The European Parliament And Of The Council on horizontal
cybersecurity requirements for products with digital elements and amending Regulation (EU) 2019/1020.
2019. URL: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:
52022PC0454.

Matt Fleming. “A Thorough Introduction to eBPF”. In: Linux Weekly News (2017).

J. Fletcher. “An Arithmetic Checksum for Serial Transmissions”. In: IEEE Transactions on Communica-
tions 30.1 (1982), pp. 247-252.

Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas
Prest, Thomas Ricosset, Gregor Seiler, William Whyte, Zhenfei Zhang, et al. “Falcon: Fast-Fourier
lattice-based compact signatures over NTRU”. In: Submission to the NIST’s post-quantum cryptography
standardization process 36.5 (2018), pp. 1-75.

Dustin Frisch, Sven Reiffmann, and Christian Pape. “An Over the Air Update Mechanism for ESP8266
Microcontrollers”. In: (Oct. 2017).

Mario Frustaci, Pasquale Pace, Gianluca Aloi, and Giancarlo Fortino. “Evaluating critical security
issues of the loT world: Present and future challenges”. In: IEEE Internet of things journal 5.4 (2017),
pp. 2483-2495.

Gartner, Inc. Gartner Says 8.4 Billion Connected "Things” Will Be in Use in 2017, Up 31 Percent From 2016.
Feb.7,2017. URL: https://www.gartner.com/en/newsroom/press-releases/2017-
02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-
up-31l-percent-from-2016.

Evgeny Gavrin, Sung-Jae Lee, Ruben Ayrapetyan, and Andrey Shitov. “Ultra lightweight JavaScript
engine for internet of things”. In: Companion Proceedings of the 2015 ACM SIGPLAN International
Conference on Systems, Programming, Languages and Applications: Software for Humanity. 2015,
pp. 19-20.

Gareth George, Fatih Bakir, Rich Wolski, and Chandra Krintz. “Nanolambda: Implementing functions
as a service at all resource scales for the internet of things”. In: 2020 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE. 2020, pp. 220-231.

George Robotics Limited. MicroPython - Python for microcontrollers. 2023. URL: https://micropyt
hon.org/.

Lov K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”. In: Proceedings of the
Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA,
May 22-24, 1996. Ed. by Gary L. Miller. ACM, 1996, pp. 212-219. DOI: 10.1145/237814.237866.
URL: https://doi.org/10.1145/237814.237866.

Kai Grunert. “Overview of JavaScript engines for resource-constrained microcontrollers”. In: 2020 5th
International Conference on Smart and Sustainable Technologies (SpliTech). IEEE. 2020, pp. 1-7.
Fiona Guerin, Teemu Karkkainen, and Jorg Ott. “Towards a Programmable World: Lua-based
Dynamic Local Orchestration of Networked Microcontrollers”. In: Proceedings of the 14th Workshop on
Challenged Networks. 2019, pp. 13-18.

Robbert Gurdeep Singh and Christophe Scholliers. “WARDuino: a dynamic WebAssembly virtual
machine for programming microcontrollers”. In: Proceedings of the 16th ACM SIGPLAN International
Conference on Managed Programming Languages and Runtimes. 2019, pp. 27-36.

Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman, Dan Gohman, Luke
Wagner, Alon Zakai, and JF Bastien. “Bringing the web up to speed with WebAssembly”. In: Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation. 2017,
pp. 185-200.

A.0

[83]

[84]

(88]

[89]

[97]
[98]

[99]

[100]

[101]

APPENDIX A: BIBLIOGRAPHY 121

Oliver Hahm, Emmanuel Baccelli, Hauke Petersen, and Nicolas Tsiftes. “Operating systems for low-end
devices in the internet of things: a survey”. In: IEEE Internet of Things Journal 3.5 (2015), pp. 720-734.
Oliver Hahm, Emmanuel Baccelli, Thomas C. Schmidt, Matthias Wahlisch, Cédric Adjih, and Laurent
Massoulié. “Low-power internet of things with NDN & cooperative caching”. In: Proceedings of the 4th
ACM Conference on Information-Centric Networking, ICN 2017, Berlin, Germany, September 26-28, 2017.
Ed. by Thomas C. Schmidt and Jan Seedorf. ACM, 2017, pp. 98-108. DOI: 10.1145/3125719.
3125732.URL: https://doi.org/10.1145/3125719.3125732.

Tony Hansen and Donald E. Eastlake 3rd. US Secure Hash Algorithms (SHA and SHA-based HMAC and
HKDF). RFC 6234. May 2011. poI: 10.17487 /RFC6234. URL: https://www.rfc-editor.org/
info/rfc6234.

Klaus Hartke. Observing Resources in the Constrained Application Protocol (CoAP). RFC 7641. Sept.
2015.D01: 10.17487/RFC7641. URL: https://www.rfc-editor.org/info/rfc7641.

Yi He, Zhenhua Zou, Kun Sun, Zhuotao Liu, Ke Xu, Qian Wang, Chao Shen, Zhi Wang, and Qi Li.
“RapidPatch: Firmware Hotpatching for Real-Time Embedded Devices”. In: 31st USENIX Security
Symposium (USENIX Security 22). Boston, MA: USENIX Association, Aug. 2022.

Peter Hoddie and Lizzie Prader. loT Development for ESP32 and ESP8266 with JavaScript: A Practical
Guide to XS and the Moddable SDK. Springer, 2020.

Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H Silverman, and William Whyte.
“NTRUSIGN: Digital signatures using the NTRU lattice”. In: Cryptographers’ track at the RSA conference.
Springer. 2003, pp. 122-140.

Jonathan W Hui and David Culler. “The dynamic behavior of a data dissemination protocol for
network programming at scale”. In: Proceedings of the 2nd international conference on Embedded
networked sensor systems. 2004, pp. 81-94.

“IEEE Standard for Low-Rate Wireless Networks”. In: [EEE Std 802.15.4-2020 (2020), pp. 1-800. DO!I:
10.1109/IEEESTD.2020.9144691.

IETF. Trusted Execution Environment Provisioning (TEE) Working Group. URL: https: //datatracker.
jetf.org/wg/teep/about/.

Intel. TinyCrypt Cryptographic Library. May 2024. URL: https://github.com/intel/tinycryp
t.

RISC-V International. RISC-V: The Open Standard RISC Instruction Set Architecture. 2024. URL:
https://riscv.org/.

loT Analytics GmbH. State of loT 2024: Number of connected loT devices growing 13% to 18.8 billion
globally. Sept. 3,2024. URL: https://iot-analytics.com/number-connected-iot-
devices/.

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. “Zero-knowledge from secure
multiparty computation”. In: Proceedings of the thirty-ninth annual ACM symposium on Theory of
computing. 2007, pp. 21-30.

ITU-T. “ITU-T Rec. Y.2060 (06/2012) Overview of the Internet of things”. In: (June 2012), pp. 1-22.
Jaein Jeong and David Culler. “Incremental network programming for wireless sensors”. In: 2004 First
Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks,
2004. IEEE SECON 2004. IEEE. 2004, pp. 25-33.

Liu Jian-band et al. “YouBike service down in Taiwan”. In: Focus Taiwan (Aug. 2016). URL: http:
//focustaiwan.tw/news/asoc/201608310010.aspx.

Narjes Jomaa, Paolo Torrini, David Nowak, Gilles Grimaud, and Samuel Hym. “Proof-oriented design
of a separation kernel with minimal trusted computing base”. In: 18th International Workshop on
Automated Verification of Critical Systems (AVOCS 2018). 2018.

Matthias J. Kannwischer, Peter Schwabe, Douglas Stebila, and Thom Wiggers. “Improving Software
Quality in Cryptography Standardization Projects”. In: [EEE European Symposium on Security
and Privacy, EuroS&P 2022 - Workshops, Genoa, Italy, June 6-10, 2022. Los Alamitos, CA, USA:
IEEE Computer Society, 2022, pp. 19-30. DOI: 10.1109/EuroSPW55150.2022.00010. URL:
https://eprint.iacr.org/2022/337.

A.0

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]
[117]
[118]
[119]

[120]

[121]

APPENDIX A: BIBLIOGRAPHY 122

Matthias J. Kannwischer, Peter Schwabe, Douglas Stebila, and Thom Wiggers. PQClean/PQClean:
Clean, portable, tested implementations of post-quantum cryptography. 2024, UrRL: https://
github.com/PQClean/PQClean.

Yoonseok Ko, Tamara Rezk, and Manuel Serrano. “Securejs compiler: Portable memory isolation
in javascript”. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing. 2021,
pp. 1265-1274.

Trishank Karthik Kuppusamy, Lois Anne DeLong, and Justin Cappos. “Uptane: Security and
customizability of software updates for vehicles” In: IEEE vehicular technology magazine 13.1 (2018),
pp. 66-73.

Alexandru Lavric, Adrian | Petrariu, and Valentin Popa. “Sigfox communication protocol: The new era
of iot?” In: 2019 international conference on sensing and instrumentation in loT Era (1SSl). IEEE. 2019,
pp. 1-4.

Xavier Leroy. “Formal verification of a realistic compiler”. en. In: Communications of the ACM 52.7
(July 2009), pp. 107-115. 1SSN: 0001-0782, 1557-7317.D01: 10.1145/1538788.1538814. URL:
https://dl.acm.org/doi/10.1145/1538788.1538814 (visited on 12/16/2021).

Philip Levis and David Culler. “Maté: A tiny virtual machine for sensor networks”. In: ACM Sigplan
Notices 10.605397.605407 (2002), pp. 85-95.

Amit Levy, Bradford Campbell, Branden Ghena, Daniel B Giffin, Pat Pannuto, Prabal Dutta, and
Philip Levis. “Multiprogramming a 64kb computer safely and efficiently”. In: Proceedings of the 26th
Symposium on Operating Systems Principles. 2017, pp. 234-251.

Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto, Prabal Dutta, and
Philip Levis. “Multiprogramming a 64kB Computer Safely and Efficiently”. In: Proceedings of the 26th
Symposium on Operating Systems Principles. SOSP ’17. Association for Computing Machinery, 2017,
pp. 234-251.

Linaro Limited. Mbed TLS. 2024. URL: https://www. trustedfirmware.org/projects/
mbed-tls/.

Patrick Lin. 10 Takeaways From Cal Poly’s Space Cyberattacks Report. June 25,2024. URL: https:
//interactive.satellitetoday.com/via/july-2024/global-consolidation-
is-changing-dynamics-of-the-sector/.

lora-alliance. TS001-1.0.4 LoRaWAN® L2 1.0.4 Specification. June 2024. URL: https://resources.
lora-alliance.org/technical-specifications/ts001-1-0-4-lorawan-12-1-0-
4-specification.

Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancréde Lepoint, Peter Schwabe, Gregor Seiler,
Damien Stehlé, and Shi Bai. “Crystals-dilithium”. In: Algorithm Specifications and Supporting
Documentation (2020).

David Malan. “Crypto for tiny objects”. In: Harvard University, Cambridge, Massachusetts, USA, Tech.
Rep (2004).

Peter Marwedel. Embedded System Design - Embedded Systems Foundations of Cyber-Physical Systems,
Second Edition. Embedded Systems. Springer, 2011. 1ISBN: 978-94-007-0256-1. DOI: 10.1007 /978~
94-007-0257-8. URL: https://doi.org/10.1007/978-94-007-0257-8.

Steven McCanne and Van Jacobson. “The BSD Packet Filter: A New Architecture for User-level Packet
Capture.” In: USENIX winter. Vol. 46. 1993, pp. 259-270.

Robert J McEliece. “A public-key cryptosystem based on algebraic”. In: Coding Thv 4244 (1978),
pp. 114-116.

David McGrew, Michael Curcio, and Scott Fluhrer. Leighton-Micali Hash-Based Signatures. RFC 8554.
Apr.2019.D01: 10.17487/RFC8554. URL: https://www.rfc-editor.org/info/rfc8554.
Rud Merriam. “Software Update Destroys $286 Million Japanese Satellite”. In: Hackaday (May 2016).
Ana Minaburo, Laurent Toutain, Carles Gomez, Dominique Barthel, and Juan-Carlos Zdfiiga. SCHC:
Generic Framework for Static Context Header Compression and Fragmentation. RFC 8724. Apr. 2020.
DOI: 10.17487/RFC8724.URL: https://www.rfc-editor.org/info/rfc8724.

Moddable Tech Inc. Moddable. 2024. urL: https://moddable.com/.

A.0

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

APPENDIX A: BIBLIOGRAPHY 123

Gabriel Montenegro, Jonathan Hui, David Culler, and Nandakishore Kushalnagar. Transmission of
IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944, Sept. 2007. DOI: 10.17487 /RFC4944, URL:
https://www.rfc-editor.org/info/rfc4944.

Roberto Morabito, Vittorio Cozzolino, Aaron Yi Ding, Nicklas Beijar, and Jorg Ott. “Consolidate loT
edge computing with lightweight virtualization”. In: IEEE network 32.1 (2018), pp. 102-111.
Brendan Moran and Hannes Tschofenig. A CBOR-based Firmware Manifest Serialisation Format. Internet-
Draft draft-moran-suit-manifest-03. Work in Progress. Internet Engineering Task Force, Oct. 2018.
42 pp. URL: https://datatracker.ietf.org/doc/draft-moran-suit-manifest/03/.
Brendan Moran, Hannes Tschofenig, and Henk Birkholz. A Manifest Information Model for Firmware
Updates in Internet of Things (loT) Devices. RFC 9124. Jan. 2022. pOI: 10.17487 /RFC9124. URL:
https://www.rfc-editor.org/info/rfc9124.

Brendan Moran, Hannes Tschofenig, David Brown, and Milosch Meriac. A Firmware Update Architecture
for Internet of Things. RFC 9019. Apr. 2021. DOI: 10. 17487 /RFC9019. URL: https://www.rfc-
editor.org/info/rfc9019.

Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Linus Gasser, Ismail Khoffi,
Justin Cappos, and Bryan Ford. “CHAINIAC: Proactive Software-Update Transparency via Collectively
Signed Skipchains and Verified Builds”. In: 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017. Ed. by Engin Kirda and Thomas Ristenpart.
USENIX Association, 2017, pp. 1271-1287. URL: https: //www.usenix.org/conference/
usenixsecurityl7/technical-sessions/presentation/nikitin.

Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Protocols. RFC 8439. June 2018. DOI:
10.17487/RFC8439. URL: https://www.rfc-editor.org/info/rfc8439.

NIST. Hash functions. 2023. URL: https://csrc.nist.gov/projects/hash-functions.
Marek Novak and Petr Skryja. “Efficient partial firmware update for loT devices with lua scripting
interface”. In: 2019 29th International Conference Radioelektronika (RADIOELEKTRONIKA). IEEE. 2019,
pp. 1-4.

George Oikonomou, Simon Duquennoy, Atis Elsts, Joakim Eriksson, Yasuyuki Tanaka, and Nicolas
Tsiftes. “The Contiki-NG open source operating system for next generation loT devices”. In: SoftwareX
18 (2022), p. 101089.

OMA. “LwM2M Technical Specification, Approved Version 1.0.2”. In: (Feb. 2018). URL: http :
/ /www . openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-
Al.

OMA SpecWorks. “Lightweight Machine to Machine Technical Specification: Core, Approved
Version 1.1” In: (July 2018). URL: http : / /www . openmobilealliance.org/release/
LightweightM2M/V1_1-20180710-A/.

OMA SpecWorks. “Lightweight Machine to Machine Technical Specification: Transport Bindings,
Approved Version 1.1” In: (July 2018). urL: http: //www.openmobilealliance.org/releas
e/LightweightM2M/V1_1-20180710-A/.

Sandro Pinto and Nuno Santos. “Demystifying Arm TrustZone: A Comprehensive Survey”. In: ACM
Comput. Surv. 51.6 (2019), 130:1-130:36. DOI: 10.1145/3291047. URL: https://doi.org/10.
1145/3291047.

Amir Pnueli, Michael Siegel, and Eli Singerman. “Translation validation”. In: Tools and Algorithms for
the Construction and Analysis of Systems: 4th International Conference, TACAS’98 Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS’98 Lisbon, Portugal, March
28-April 4, 1998 Proceedings 4. Springer. 1998, pp. 151-166.

Niels Reijers and Chi-Sheng Shih. “CapeVM: A safe and fast virtual machine for resource-constrained
Internet-of-Things devices”. In: Proceedings of the 16th ACM Conference on Embedded Networked
Sensor Systems. 2018, pp. 250-263.

Vincent Rijmen and Joan Daemen. “Advanced encryption standard”. In: Proceedings of federal
information processing standards publications, national institute of standards and technology 19
(2001), p. 22.

A.0

[139]

[140]

[141]

[142]

[143]
[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]
[152]

[153]

[154]

[155]
[156]

[157]

[158]

APPENDIX A: BIBLIOGRAPHY 124

Rodrigo Roman, Cristina Alcaraz, and Javier Lopez. “A survey of cryptographic primitives and
implementations for hardware-constrained sensor network nodes”. In: Mobile Networks and
Applications 12 (2007), pp. 231-244.

Peter Ruckebusch, Eli De Poorter, Carolina Fortuna, and Ingrid Moerman. “Gitar: Generic extension for
internet-of-things architectures enabling dynamic updates of network and application modules”. In:
Ad Hoc Networks 36 (2016), pp. 127-151.

Spyridon Samonas and David Coss. “The CIA strikes back: Redefining confidentiality, integrity and
availability in security.” In: Journal of Information System Security 10.3 (2014).

Len Sassaman, Meredith L. Patterson, Sergey Bratus, and Anna Shubina. “The Halting Problems of
Network Stack Insecurity”. In: login Usenix Mag. 36.6 (2011). URL: https://www.usenix.org/
publications/login/december-2011-volume-36-number-6/halting-problems-
network-stack-insecurity.

Jim Schaad. CBOR Object Signing and Encryption (COSE). RFC 8152. July 2017. po1: 10.17487/
RFC8152. URL: https://www.rfc-editor.org/info/rfc8152.

J Schlienz and D Raddino. “Narrowband internet of things whitepaper”. In: White Paper, Rohde &
Schwarz (2016), pp. 1-42.

Goran Selander, John Preuf} Mattsson, Francesca Palombini, and Ludwig Seitz. Object Security for
Constrained RESTful Environments (OSCORE). RFC 8613. July 2019. pOI: 10.17487 /RFC8613. URL:
https://www.rfc-editor.org/info/rfc8613.

Nik Shaylor, Douglas N Simon, and William R Bush. “A java virtual machine architecture for very small
devices”. In: ACM SIGPLAN Notices 38.7 (2003), pp. 34-41.

Zach Shelby, Klaus Hartke, and Carsten Bormann. The Constrained Application Protocol (CoAP).
RFC 7252. June 2014.D01: 10.17487/RFC7252. URL: https://www.rfc-editor.org/info/
rfc7252.

Zhengguo Sheng, Shusen Yang, Yifan Yu, Athanasios V Vasilakos, Julie A McCann, and Kin K Leung. “A
survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities”.
In: Wireless Communications, IEEE 20.6 (2013), pp. 91-98.

Kyung-Ah Shim. “A survey on post-quantum public-key signature schemes for secure vehicular
communications”. In: I[EEE Transactions on Intelligent Transportation Systems 23.9 (2021), pp. 14025-
14042.

Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a
Quantum Computer”. In: SIAM Rev. 41.2 (1999), pp. 303-332. D0I: 10.1137/S0036144598347011.
URL: https://doi.org/10.1137/S0036144598347011.

Volodymyr Shymanskyy. WASM3: A high Performance WebAssembly Interpreter Written in C. Oct. 2020.
URL: https://github.com/wasm3/wasm3.

Sigfox. Sigfox Device Radio Specification. 2019. URL: https://build.sigfox.com/sigfox-
device-radio-specifications.

Miguel Silva, David Cerdeira, Sandro Pinto, and Tiago Gomes. “Operating systems for Internet of
Things low-end devices: Analysis and benchmarking”. In: IEEE Internet of Things Journal 6.6 (2019),
pp. 10375-10383.

Saleh Soltan, Prateek Mittal, and H Vincent Poor. “BlackloT: loT Botnet of high wattage devices can
disrupt the power grid”. In: Proc. USENIX Security. Vol. 18. 2018.

Secure Hash Standard. “Secure hash standard”. In: FIPS PUB (1995), pp. 180-1.

National Institute of Standards and Technology. “Digital Signature Standard”. In: Federal Information
Processing Standards FIPS 186-4. NIST. July 2013.

Peter Van der Stok, Carsten Bormann, and Anuj Sehgal. PATCH and FETCH Methods for the Constrained
Application Protocol (CoAP). RFC 8132. Apr. 2017.D0OI: 10.17487/RFC8132. URL: https://www.
rfc-editor.org/info/rfc8132.

Milosh Stolikj, Pieter JL Cuijpers, and Johan J Lukkien. “Efficient reprogramming of wireless sensor
networks using incremental updates”. In: Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2013 IEEE International Conference on. IEEE. 2013, pp. 584-589.

A.0

[159]
[160]
[161]

[162]
[163]

[164]

[165]
[166]

[167]

[168]

[169]

[170]

[171]
[172]

[173]

[174]

[175]

[176]

[177]

APPENDIX A: BIBLIOGRAPHY 125

James A. Storer and Thomas G. Szymanski. “Data Compression via Textual Substitution”. In: 29.4 (Oct.
1982), pp. 928-951. DOI: 10.1145/322344.322346.

The Apache Software Foundation. Apache NuttX is a mature, real-time embedded operating system
(RTOS). 2024. URL: https://nuttx.apache.org/.

The MCUboot Bootloader. URL: https://github.com/runtimeco/mcuboot.

The Update Framework. URL: https://github.com/theupdateframework/tuf.

Hannes Tschofenig and Thomas Fossati. Transport Layer Security (TLS) / Datagram Transport Layer
Security (DTLS) Profiles for the Internet of Things. RFC 7925. July 2016. pol: 10.17487 /RFC7925.
URL: https://www.rfc-editor.org/info/rfc7925.

Hannes Tschofenig, Russ Housley, Brendan Moran, David Brown, and Ken Takayama. Encrypted
Payloads in SUIT Manifests. Internet-Draft draft-ietf-suit-firmware-encryption-20. Work in Progress.
Internet Engineering Task Force, July 2024. 55 pp. URL: https://datatracker.ietf.org/
doc/draft-ietf-suit-firmware-encryption/20/.

Sami Vaarala. Duktape. 2024. urRL: https://duktape.org/.

Michel Veillette, Peter Van der Stok, Alexander Pelov, Andy Bierman, and Carsten Bormann. CoAP
Management Interface (CORECONF). Internet-Draft draft-ietf-core-comi-17. Work in Progress. Internet
Engineering Task Force, Mar. 2024. 48 pp. URL: https://datatracker.ietf.org/doc/draft-
jetf-core-comi/17/.

W3C. WASI: libc Implementation for WebAssembly. May 2024. URL: https: //github.com/
WebAssembly/wasi-1libc.

Alexander Wachter. IPv6 over Controller Area Network. Internet-Draft draft-wachter-6lo-can-01. Work
in Progress. Internet Engineering Task Force, Feb. 2020. 18 pp. uRL: https://datatracker.
jetf.org/doc/draft-wachter-6lo-can/01/.

Jos Wetzels. “Internet of Pwnable Things: Challenges in Embedded Binary Security”. In: login Usenix
Mag. 42.2 (2017). URL: https://www.usenix.org/publications/login/summer2017/
wetzels.

Gordon F Williams. Making Things Smart: Easy Embedded JavaScript Programming for Making
Everyday Objects into Intelligent Machines. Maker Media, Inc., 2017.

Martin Woolley. “Bluetooth core specification v5. 1”. In: Bluetooth. 2019.

Mehmet Erkan Yiiksel. “Power consumption analysis of a Wi-Fi-based loT device”. In: Electrica 20.1
(2020), pp. 62-71.

Zephyr Project. Zephyr Project - A proven RTOS ecosystem, by developers, for developers. 2024. URL:
https://www.zephyrproject.org/.

Wei Zhou, Zhougqi Jiang, and Le Guan. “Understanding MPU Usage in Microcontroller-based Systems
in the Wild”. In: Proceedings 2023 Workshop on Binary Analysis Research. San Diego, CA, USA: Internet
Society. 2023.

Xiaorui Zhu, Xianping Tao, Tao Gu, and Jian Lu. “ReLog: A systematic approach for supporting efficient
reprogramming in wireless sensor networks”. In: Journal of Parallel and Distributed Computing 102
(2017), pp. 132-148.

Torsten Zimmermann, Jens Hiller, Helge Reelfs, Pascal Hein, and Klaus Wehrle. “SPLIT: Smart
Protocol Loading for the 10T.” In: EWSN. 2018, pp. 49-54.

Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko, and Benjamin Beurdouche.
“HACL*: A verified modern cryptographic library”. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM. 2017, pp. 1789-1806.

APPENDIX B

LIST OF ACRONYMS

ACDS Attitude Determination and Control System
ANSI American National Standards Institute
AOT Ahead-of-Time

BPF Berkeley Packet Filter

CAN Controller Area Network

CBOR Concise Binary Object Representation
CertFC Certified Femto-Container

CoAP Constrained Application Protocol
CORECONF CoAP Management Interface

COSE CBOR Object Signing and Encryption
DFU Device Firmware Upgrade

ELF executable and linkable format

FaaS Functions-as-a-Service

HMAC Hash-based Message Authentication Code
HSS Hierarchical Signature System

IETF Internet Engineering Task Force

loT Internet of Things

JIT Just-in-Time

JOSE Javascript Object Signing and Encryption
JSON JavaScript Object Notation

LEO Low-Earth Orbit

LMS Leighton-Micali Signature

LoC Lines of Code

LPWAN Low Power WAN

LwM2M Lightweight Machine-to-Machine

MAC Message Authentication Code

