
Enabling Post-quantum Secure

Software Reconfiguration of

Heterogeneous Resource-Constrained

Networked Devices

Dissertation
zur Erlangung des Grades eines Doktors der Naturwissenschaften

am Fachbereich Mathematik und Informatik der
Freien Universität Berlin

vorgelegt von

Koen Zandberg

Berlin, 2025

NABLING OST-QUANTUM ECURE OFTWARE ECONFIGURATION OF ETEROGENEOUS
ESOURCE-ONSTRAINED ETWORKED EVICES 1

Advisor Pro. r. Emmanuel accelli
Reviewer Pro. r. Mesut Güneş

1 NTRODUCTION 7
1.1 COPE OF THIS WORK . 9
1.2 ESEARCH QUESTIONS . 10
1.3 HESIS ONTRIBUTIONS . 10
1.4 UBLISHED ESULTS . 12

1.4.1 ODE ONTRIBUTIONS . 14
1.5 UTLINE . 14

2 ACKGROUND 15
2.1 ARDWARE CONSTRAINTS . 15
2.2 ETWORK ONNECTIVITY . 16

2.2.1  802.15.4 . 16
2.2.2 OA . 17

2.3 IRMWARE AND PERATING YSTEMS . 17
2.3.1  . 18
2.3.2 ONTIKI- . 18
2.3.3 REE . 18
2.3.4 EPHYR . 19
2.3.5 UTT . 19
2.3.6 ONGOOSE S . 19
2.3.7 OCK . 19

2.4 ECURITY RIMITIVES . 19
2.4.1 ECURITY SPECTS . 20
2.4.2 YMMETRIC KEY ENCRYPTION . 20
2.4.3 UBLIC EY RYPTOGRAPHY . 21
2.4.4 ASH FUNCTIONS . 21

2.5 OFTWARE UPDATES FOR CONSTRAINED DEVICES . 22
2.5.1 MBEDDED OFTWARE ESIGN N OW-END O EVICES 22
2.5.2 PDATE RAMEWORK ACKEND . 23
2.5.3 ETWORK TRANSPORT TO THE FIRMWARE TOWARDS THE O DEVICES 24
2.5.4 PEN STANDARDS FOR ECURE ONSTRAINED IRMWARE PDATES 24

2.6 UTHENTICATION THROUGH IGITAL SIGNATURES . 26
2.6.1 OST-UANTUM SIGNATURE SCHEMES . 27
2.6.2 RE-UANTUM ALGORITHMS . 28

2.7 MBEDDED OFTWARE IRTUALISATION AND ANDBOXING 29
2.7.1 CRIPT ENVIRONMENTS . 29
2.7.2 IRTUAL ACHINES . 31

3 OMPARATIVE VALUATION OF OST- AND RE-QUANTUM IGITAL IGNATURES FOR ON-
STRAINED EVICES 34
3.1 MPACT OF RYPTOGRAPHIC PRIMITIVES ON FIRMWARE 34

3.1.1 IRMWARE UPDATE SIZES AND OST-QUANTUM IGNATURES 35
3.2 RYPTOGRAPHIC IBRARY SELECTION . 36

3.2.1 RE-QUANTUM SIGNATURE SCHEMES . 36
3.2.2 OST-QUANTUM SIGNATURE SCHEMES . 37
3.2.3 ASH FUNCTIONS . 38

NABLING OST-QUANTUM ECURE OFTWARE ECONFIGURATION OF ETEROGENEOUS
ESOURCE-ONSTRAINED ETWORKED EVICES 3

3.3 ENCHMARKS . 39
3.3.1 ENCHMARK HARDWARE SETUP . 39
3.3.2 RE-QUANTUM SIGNATURE BASELINE . 39
3.3.3 OST QUANTUM CRYPTOGRAPHY PRIMITIVES . 40
3.3.4 ASH FUNCTION BENCHMARKS . 41

3.4 MPACT OF POST-QUANTUM PRIMITIVES ON EMBEDDED DEVICES 42
3.4.1 HE COST OF POST-QUANTUM SECURITY . 42
3.4.2 HE COST OF POST-QUANTUM ALGORITHMS WITH FIRMWARE UPDATES 43
3.4.3 EAL-WORLD USABILITY OF POST-QUANTUM DIGITAL SIGNATURES 44

3.5 ISCUSSION . 45
3.5.1 OMPARISON TO PRE-QUANTUM DIGITAL SIGNATURES 45
3.5.2 MPACT ON REALWORLD SCENARIOS . 45

3.6 ONCLUSION . 46

4 ECURE IRMWARE PDATE RAMEWORK FOR OW-OWER NTERNET OF HINGS 47
4.1 PDATE ARCHITECTURE . 48

4.1.1 EVICE PDATE OTIFICATION . 49
4.1.2 ANIFEST ETRIEVAL . 49
4.1.3 ANIFEST UTHENTICITY ERIFICATION . 49
4.1.4 IRMWARE PDATE PPLICABILITY HECKS . 49
4.1.5 IRMWARE ETRIEVAL . 49
4.1.6 IRMWARE UTHENTICITY ERIFICATION . 50
4.1.7 IRMWARE NVOCATION . 50

4.2 IRMWARE EQUIREMENTS . 50
4.3 ANIFEST ESIGN . 51
4.4 MPLEMENTATION OF ECURE IRMWARE PDATES . 52

4.4.1 CENARIO SETUP . 52
4.4.2 OMPONENTS AND UNCTIONAL VERVIEW . 53

4.5 ONFIGURABILITY OF THE ROTOTYPE . 55
4.5.1 ASELINE . 55
4.5.2 ASIC- . 56
4.5.3 V6- . 56
4.5.4 - . 56
4.5.5 W2- . 57

4.6 ERFORMANCE EVALUATION . 57
4.7 ELATIVE MPACT OF RYPTOGRAPHIC IBRARIES . 58
4.8 VALUATING THE OST OF THE  PDATE UNCTIONALITY 59

4.8.1 HE OST OF  . 59
4.8.2 HE OST OF TANDARDS OMPLIANCE FOR  60

4.9 ECURITY SSESSMENT . 61
4.9.1 IRMWARE AMPERING . 61
4.9.2 IRMWARE EPLAY . 62
4.9.3 FFLINE EVICE TTACK . 62
4.9.4 EVICE IRMWARE ISMATCH . 62
4.9.5 LASH EMORY OCATION ISMATCH . 62
4.9.6 NEXPECTED RECURSOR MAGE . 63
4.9.7 IRMWARE EVERSE NGINEERING . 63
4.9.8 ESOURCE XHAUSTION . 63

4.10 ISCUSSION . 64
4.10.1 AKING THE FIRMWARE UPDATE RELIABLE IS KEY 64
4.10.2 SE DELEGATION CAPABILITIES WITH CARE . 64

NABLING OST-QUANTUM ECURE OFTWARE ECONFIGURATION OF ETEROGENEOUS
ESOURCE-ONSTRAINED ETWORKED EVICES 4

4.10.3 HIELDING AGAINST RESOURCE EXHAUSTION AND BEST-BEFORE VULNERABILI-
TIES . 64

4.10.4 EAL-WORLD REQUIREMENTS MAKE FIRMWARE UPDATES COMPLEX 65
4.10.5 O SOFTWARE UPDATES ARE NOT JUST FOR CRITICAL INFRASTRUCTURE 65

4.11 ONCLUSION . 65

5 R:  INY OFTWARE-ONLYIRTUAL ACHINE FOR NTERNET OF HINGS IRMWARE 67
5.1 ESIGN OALS & EQUIREMENTS . 68

5.1.1 INIMAL EMORY OOTPRINT . 68
5.1.2 O ELIANCE N ARDWARE-PECIFIC ECHANISM OR EMORY ROTECTION 68
5.1.3 OLERABLE ODE XECUTION LUMP . 68
5.1.4 MALL PPLICATION ODE IZE . 68

5.2 IRTUAL ACHINE ESIGN . 69
5.2.1 XECUTION OOKS . 69
5.2.2 RCHITECTURE . 70
5.2.3 EMORY ROTECTION . 71

5.3 XPERIMENTAL VALUATION . 72
5.3.1 OMPUTING ENCHMARK ETUP . 73
5.3.2 ETWORKED ENCHMARK ETUP . 73
5.3.3 IRTUAL ACHINE EMORY EQUIREMENT . 73
5.3.4 PPLICATION IZE OMPARISON . 74
5.3.5 RWITH OGIC INVOLVING O ETWORKING 74
5.3.6 PPLICATION LASH EQUIREMENT . 75
5.3.7 UNTIME EMORY EQUIREMENT . 75

5.4 DISCUSSION . 75
5.4.1 NHERENT IMITATIONS WITH A  . 75
5.4.2 ECREASINGASM  USAGE . 76
5.4.3 MPROVING R EXECUTION TIME OVERHEAD 76
5.4.4 ECREASING R SCRIPT SIZE OVERHEAD . 76
5.4.5 XTENDING R SANDBOXING GUARANTEES 77

5.5 ONCLUSION . 77

6 ANDBOXEDUNCTIONXECUTIONFOREVPS-TYLEECONFIGURATIONOFONSTRAINED
EVICES 78
6.1 HREAT ODEL . 78

6.1.1 ALICIOUS ENANT . 79
6.1.2 ALICIOUS LIENT . 79
6.1.3 TTACK ECTORS . 79

6.2 MBEDDED UNTIME RCHITECTURE ESIGN . 80
6.2.1 SE OF AN WITH ULTI-HREADING . 80
6.2.2 O SSUMPTIONS ON ICROCONTROLLER ARDWARE 80
6.2.3 SE OF LTRA-IGHTWEIGHT IRTUALISATION 80
6.2.4 SE OF IMPLE ONTAINERIZATION . 81
6.2.5 SOLATION & ANDBOXING THROUGH IRTUALISATION 81
6.2.6 VENT-BASED AUNCHPAD XECUTION ODEL 81
6.2.7 OW-POWER ECURE UNTIME PDATE RIMITIVES 81

6.3 LTRA-IGHTWEIGHT  ICRO-ENCHMARK . 82
6.3.1 ONSIDERING SIZE . 82
6.3.2 ONSIDERING SPEED . 83
6.3.3 ONSIDERING  ARCHITECTURE & SECURITY 84
6.3.4 HOICE OF IRTUALISATION . 84

6.4 EMTO-ONTAINER UNTIME MPLEMENTATION . 84

NABLING OST-QUANTUM ECURE OFTWARE ECONFIGURATION OF ETEROGENEOUS
ESOURCE-ONSTRAINED ETWORKED EVICES 5

6.4.1 SE OF  ULTI-HREADING . 84
6.4.2 LTRA-IGHTWEIGHT IRTUALISATION USING E NSTRUCTION ET 85
6.4.3 SOLATION & ANDBOXING . 86
6.4.4 OOKS & VENT-BASED XECUTION . 87

6.5 SE-ASE ROTOTYPING WITH EMTO-ONTAINERS 88
6.5.1 ROGRAMMING ODEL . 88
6.5.2 ERNEL EBUG ODE XAMPLE . 88
6.5.3 ETWORKED ENSOR ODE XAMPLE . 89

6.6 ORMAL VERIFICATION . 93
6.6.1 ARGETED REQUIREMENTS FORMALIZATION. 93
6.6.2 ORMAL VERIFICATION APPROACH. 93

6.7 ERFORMANCE EVALUATION . 94
6.8 OSTING NGINE NALYSIS . 94
6.9 XPERIMENTS WITH A INGLE ONTAINER . 95

6.9.1 EMTO-ONTAINERS WITH ULTIPLE NSTANCES 96
6.10 VERHEAD DDED BY OOKS . 97
6.11 ISCUSSION . 98

6.11.1 IRTUALISATION VS OWER-FFICIENCY . 98
6.11.2 ONTROLLING ENANT RIVILEGES . 98
6.11.3 NSTALL IME VS XECUTION IME . 98
6.11.4 ENANT-LOCAL STORAGE OF VALUES . 99
6.11.5 ECURITY VS ONG-RUNNING PPLICATION UPPORT 99
6.11.6 IXED- VS ARIABLE-LENGTH NSTRUCTIONS . 99

6.12 ONCLUSION . 100

7 ASE TUDY: ECURE OFTWARE ECONFIGURATION ON ANOSATELLITE 101
7.1 HINGAT . 101

7.1.1 YSTEM RCHITECTURE ESIGN . 101
7.1.2 OMMUNICATION HARACTERISTICS VERVIEW 103
7.1.3 NTERMITTENT COMMUNICATION AND POWER SUPPLY 104
7.1.4 OSTED AYLOAD UPDATE REQUIREMENTS . 104

7.2 OFTWARE PDATE MPLEMENTATION . 104
7.2.1 ECURITY EQUIREMENTS . 104
7.2.2 RUST NCHOR . 105
7.2.3 UBEDATE OFTWARE IFE-YCLE HASES . 105
7.2.4 UPPORTING ETWORK RANSPORT ETEROGENEITY 106
7.2.5 UPPORTING PDATED OFTWARE ETEROGENEITY 107
7.2.6 OW-POWER ND-TO-ND ECURITY USING  108

7.3 ERFORMANCE VALUATION . 109
7.3.1 EMORY OOTPRINT VERHEAD . 109
7.3.2 ETWORK RANSFER VERHEAD . 110

7.4 ISCUSSION . 110
7.4.1 ORTABILITY . 110
7.4.2 ETWORK TACK IMPLIFICATION & TANDARDIZATION 110
7.4.3 LTERNATIVE CRYPTOGRAPHIC PRIMITIVES . 111

7.5 ONCLUSION . 111

8 ONCLUSION 112
8.1 UMMARY . 112
8.2 ERSPECTIVES . 114

 IBLIOGRAPHY 116

NABLING OST-QUANTUM ECURE OFTWARE ECONFIGURATION OF ETEROGENEOUS
ESOURCE-ONSTRAINED ETWORKED EVICES 6

 IST OF CRONYMS 126

 URRICULUM ITAE 128

 EUTSCHE ZUSAMMENFASSUNG 130

7

CHAPTER 1

INTRODUCTION

The number o small constrained embedded devices deployed around
in our personal environment keeps growing. Gartner [74] estimates a
8.4 billion internet connected devices in use in 2017. This growth
continued with over 18.8 billion devices connected in 2024[95]. n
contrast to general purpose computer systems such as desktops,
laptops and servers, this class o devices can be signiicantly more
constrained in resources such as in an industrial control system or
in a vehicle [115, einition 1.1]. These embedded devices serve a
speciic tailored purpose in the system they are embedded in, ofen a
cyber-physical purpose where physical systems are operated by the
embedded device. ofware bugs and vulnerabilities can inluence
physical operations andmight be able to cause physical harm when
triggered or exploited. The cyber-physical nature o these devices can
make these embedded devices an attractive target or attackers, where
the constrained nature makes it harder to deend against attackers and
the physical aspect can cause direct harm. For these reasons it is
paramount to either prevent security vulnerabilities, or when bugs
are discovered, have amechanism in place to patch the bug in the
sofware. Without the ability to resolve security issues in the ield, it is
only a matter o time until the device becomes a security liability.

With the emergence o the nternet o Things (oT) [97], embedded
systems are more connected than ever. These devices gather data
measurements about their surrounding environment, process inorma-
tion and control physical systems. n addition, these devices ofen
transmit their measurements to centralized server-based systems. The
interconnected nature o these devices increases the attack surace o
these devices and makes them an attractive target or malicious actors.
With the internet connectivity o oT devices, it must be assumed
attackers are able to directly communicate with the devices. elying on
an unconstrained gateway device to guard access to the constrained
devices is no longer sufficient. These constrained devices must thus be
sufficiently secure to prevent damage caused by such malicious actors.

The added internet connectivity, provided by state-o-the-art network
architectures, increases the sofware complexity on oT devices. The
network stack must be able to both transmit the measurement data to
centralized systems over the internet, as well as receive instructions
and coniguration rom these centralized systems. As such the handling
routines or these devices must be able to handle arbitrary input

NABLING OST-QUANTUM ECURE OFTWARE ECONFIGURATION OF ETEROGENEOUS
ESOURCE-ONSTRAINED ETWORKED EVICES HAPTER 1: NTRODUCTION 8

received via the network connection. Given the complexity o network
protocols used in the constrained embedded space, these network
handler routines are susceptible to vulnerabilities [142]. The issue is
exacerbated by the lack o common sofware isolation mechanisms
present on general purpose computers, as the hardware eatures to
mitigate or isolate common vulnerabilities are not present on the
constrained devices [169].

A large raction o oT devices are based onmicrocontrollers, highly
integrated devices and optimized or power consumption, production
cost or chip size. Conventional approaches to security usedwith general
purpose operating systems, such as relying on security eatures o the
hardware platorm, are not available on these systems. The modular
multi-processing approach used by conventional operating systems, by
splitting sofware components into multiple isolated processes, relies
on unctionality provided by platorm hardware such as an memory
management unit (MM) not available on microcontrollers. nstead,
only a ew kilobytes o memory are available or the operating system.
Additional hardware eatures or protection are ully optional and ofen
unavailable. Thus the impact o vulnerabilities in the sofware can be
used to gain ull access to the system. Thereor, protecting the sofware
must it within the limited memory and processing power available,
and cannot assume the presence o hardware security eatures.

The ability to isolate processes and runmultiple different sofware
components rom different stakeholders, a solved issue on general
purpose computers through virtualisation and containerization, is a
challenging subject area in constrained devices. Here again the lack o
hardware security and virtualisation eatures available on general
purpose computers, hampers the deployment o similar solutions in
the constrained oT space. While isolating sensitive data processing
rom the attack surace provided by network handlers can curb entire
classes o vulnerabilities, deploying such isolation mechanisms is not
trivial on constrained devices [174].

However, the ability to resolve vulnerabilities in a device is not the
only use-case or over-the-air updates. Without updates, the ea-
tures provided by a device are ixed at deployment time. Adding
new unctionality and enhancing existing eatures o a device allows
deployments to be more lexible in their purpose, and allows stake-
holders to adapt existing devices to new developments. The scope o
these adaptations can range rom simple coniguration updates to
adjustments o single sofware components to the deployment o a
completely new operating system on the devices. This lexibility can
extend the deployment lietime o the device and allow or adjusting to
new and unexpected developments during the device lietime.

With the complexity o current sofware, the discovery o new bugs is
just a matter o time. While techniques exist to discover and mitigate
bugs beore sofware is deployed in production systems, the ability
to resolve bugs while the device is already deployed in the ield is
a mandatory eature. The European nion mandates the ability
to update sofware running on devices or the ull lie cycle o the
device [68]. Given the constrained nature o the oT devices in the ield,

1.1 HAPTER 1: NTRODUCTION 9

approaches to sofware updates used with general purpose operating
systems are not always possible. nstead a novel, holistic approach
suitable or constrained devices is required. This approach must allow
or updating sofware components on the device without requiring
personnel to physically manipulate the device. evices can be deeply
embedded in existing structures, or simply unreachable without
signiicant effort. For example with satellite-based systems [111],
while still a signiicant target or cyberattacks, are not accessible by
conventional means when an issue arises.

Furthermore, the isolation o sofware componentswithin the operating
system, without any reliance on the optional security hardware
available, can signiicantly enhance the lexibility and security o the
constrained system. While the lack o resources in these constrained
devices must be taken into account here and poses a challenge, the
isolation o sofware modules provides both security beneits and
allows or modularization o the sofware components during updates.

The advent o quantum computers urther complicate the matter or
the state-o-the-art solutions. Conventional cryptographic algorithms
used to secure network communication, have limited time remaining
beore they can no longer be considered secure. While research on
post-quantum cryptographic algorithms is on-going, current devices
require a level o crypto-agility, being able to adapt to changes in the
cryptographic stack and switch algorithms when novel algorithms are
developed. Furthermore, conventional (pre-quantum) cryptographic
algorithms beneit rom the availability o implementations optimized
or constrained embedded systems. Given the novel nature o currently
available post-quantum cryptographic algorithms, these have not yet
had the multiple development cycles available to older algorithms. For
the constrained embedded devices, algorithms and implementations
must be made available and suitable or the limited resources available
on these platorms.

1 . 1 SCOPE OF TH IS WORK

When considering embedded systems in general, the ull scope can
range any computational device integrated into a larger system. Within
these systems embedded processors have a well-deined design
purpose. The processing power andmemory available to these systems
can range rom a ew kilobytes to multiple gigabytes o memory,
running a monolithic sofware stack or a ull blown general purpose
operating system tailored to the application o the system.

However, in this work the ocus is on the constrained embedded
systems, restricted to class 0 and 1 type o devices [41]. These systems
are severely limited in computational power and memory. For these
devices, the processor is ofen running between 10MHz to 500MHz.
Memory on these devices is 64 k to 1024 k o lash and 10 Ki to
100 Ki o AM.

This type o devices is unable to provide the hardware unctionality
required to run inux or other general purpose operating system.

1.3 HAPTER 1: NTRODUCTION 10

nstead these device run a single monolithic sofware system called
irmware.

imilar to the processing power and memory, the network links avail-
able to the devices considered is also constrained. etwork throughput
is limited to 10 kbps to 1024 kbps and potentially asymmetric in nature.
The network links provided on these devices can have widely different
upload and download throughputs.

Auxiliary security hardware components are assumed to be absent
rom the platorms considered. omemicrocontrollers contain extra
peripherals aimed at security. The memory protection unit (MP) or
Physical Memory Protection (PMP) provides granular permissions or
memory access and allows segmenting different sofware modules.

While solutions can be designed to rely on these components, a consid-
erable number o devices do not have access to these components but
still require robust security and update solutions.

1 . 2 RESEARCH QUEST IONS

The main research question o this work is:

How can we enable post-quantum secure sofware reconiguration
o heterogeneous resource-constrained network devices using open
solutions?

This research question can be divided into multiple sub questions.

RQ1 Which post-quantum primitives are suitable in practice on
resource-constrained microcontroller-based devices?

RQ2 How can resource-constrained device secure sofware updates
be generalized and democratized?

RQ3 How can individual sofware components be isolated and
executed securely (sandboxed) on resource-constrained devices,
with or without auxiliary hardware security components?

RQ4 How can a multi-tenant (sandboxed) environment be supported
on a resource-constrained device, analogous to a cloud paradigm
e.g. aclFaa.

1 . 3 THES IS CONTR IBUT IONS

n this thesis,  present my work on secure sofware reconiguration on
small embedded systems in a post-quantum, low-throughput network
scenario.

n the space o post-quantum security  evaluate a number o sig-
nature schemes on small microcontrollers. This work is published
in “Quantum-esistant ofware pdate ecurity on ow-Power
etworked Embedded evices” [4] whereby  survey post-quantum
signature schemes suitable or embedded systems.  compare the
selected cryptographic signature schemes experimentally on a number

1.3 HAPTER 1: NTRODUCTION 11

igital ignatures

chapter 3
“Quantum-esistant ofwarepdateecurity on ow-Poweret-
worked Embedded evices”[4]

ecure ofware pdates

chapter 4“ecure Firmware pdates or Constrained oT evices sing pen
tandards: A eality Check”[3]
A Concise Binary Object Representation (CBOR)-based Serialization
Format or the Sofware Updates or Internet o Things (SUIT) Maniest[7]

ightweight Virtualization

chapter 5“Minimal Virtual Machines on oTMicrocontrollers: The Case o erkeley
Packet Filters with rPF”[1]
“End-to-EndMechanized Proo o an ePF Virtual Machine or Microcon-
trollers”[8]

andboxed Functions

chapter 6
“Femto-containers: lightweight virtualization and ault isolation or
small sofware unctions on low-power oT microcontrollers”[2]

Case tudy: ano atellite

chapter 7
“Cubedate: ecuring ofwarepdates in rbit or ow-Power Payloads
Hosted on Cubeats”[6]

Figure 1.1: Contributions o this thesis in relation to the academic output

o microcontrollers against the main pre-quantum signature schemes.
 show that while post-quantum-security is indeed doable on these
devices, large differences exist between the different cryptographic
primitives, their implementation, and the burden they put on the
device.

To achieve secure irmware updates on small embedded systems, 
contribute to the design and standardization o a secure metadata
ormat or payloads. This work has been published in A Concise
Binary Object Representation (CBOR)-based Serialization Format or
the Sofware Updates or Internet o Things (SUIT) Maniest[7] which
speciies the T standard to which  contribute. Furthermore,
 present the irst results o experiments using T or irmware
updates on a common oT operating system, or both pre-quantum
and post-quantum security levels [3, 4].  published an open source
implementation o T able to deliver arbitrary irmware updates or
the T operating system.  show that irmware updates secured
with T can be achieved on a large variety o devices, including the
smallest o microcontrollers.

n the domain o small virtual machines or microcontrollers:  design
rPF, a small sofware-only virtual machine optimized or small
virtualised applications on embedded systems.  present the design

1.4 HAPTER 1: NTRODUCTION 12

and implementation o rPF as lightweight modular sandbox in T. 
compare WebAssembly and rPF on embedded systems and show the
minimal impact rPF has on the total irmware size.  evaluate the
capabilities o rPF or running small business logic applications. 
show that rPF can be deployed with minimal impact on the irmware
size. This work has been published beore as [1].

Aiming to provide an environment or executing unctions:  build
Femto-Container on top o rPF as a Functions-as-a-ervice (Faa)-like
runtime or debugging and enhancing irmware on small embedded sys-
tems. This work has been published as “Femto-containers: lightweight
virtualization and ault isolation or small sofware unctions on
low-power oT microcontrollers” [2] whereby  comparatively evaluate
Femto-Container against rPF and WebAssembly. The implementation
o Femto-Containers is so small that, in collaboration with ormal
veriication specialists, we provide an implementation o the hosting
engine providing ormal guarantees on memory- and ault-isolation.
 thus demonstrate how Femto-Container provides an attractive
alternative as hosting engine or multi-tenant unctions on embedded
systems.

Finally, aiming to veriy the design o update components,  provide a
case-study: Thingat, a low-power, low-cost payload hosted on a
nano-satellite (Cubeat) launched in ow-Earth rbit (E) in 2023. n
this context  survey open standard protocols or secure over-the-air
sofware (re-)coniguration on Thingat.  then deine Cubedate, a
generic architecture combining several protocols, T and the work 
present in this thesis to enable various levels o sofware updates or
Thingat.  evaluate an open source implementation o Cubedate [6].

1 . 4 PUBL ISHED RESULTS

The outlined research results have led to publications o the research
results in the orm o peer-reviewed papers and an open speciication
under active review. The ollowing work has been published in scope
o this thesis:

[1] Koen Zandberg and Emmanuel accelli. “Minimal Virtual
Machines on oT Microcontrollers: The Case o erkeley Packet
Filters with rPF”. n: 9th IFIP International Conerence on
Perormance Evaluation and Modeling in Wireless Networks,
PEMWN 2020, Berlin, Germany, December 1-3, 2020. EEE, 2020,
pp. 1–6. DOI: 10.23919/PEMWN50727.2020.9293081.
URL: https://doi.org/10.23919/PEMWN50727.2020.
9293081.

[2] Koen Zandberg, Emmanuel accelli, henghao Yuan, Frédéric
esson, and Jean-Pierre Talpin. “Femto-containers: lightweight
virtualization and ault isolation or small sofware unctions
on low-power oT microcontrollers”. n:Middleware ’22: 23rd
International Middleware Conerence, Quebec, QC, Canada,
November 7 - 11, 2022. Ed. by Paolo ellavista, Kaiwen Zhang,
Abdelouahed Gherbi, aurabh agchi, Marta Patiño, Giuseppe
i Modica, and Julien Gascon-amson. ACM, 2022, pp. 161–173.

1.4.1 HAPTER 1: NTRODUCTION 13

DOI: 10.1145/3528535.3565242. URL: https://doi.
org/10.1145/3528535.3565242.

[3] Koen Zandberg, Kaspar chleiser, Francisco Acosta Padilla,
Hannes Tschoenig, and Emmanuel accelli. “ecure Firmware
pdates or Constrained oT evices sing pen tandards: A
eality Check”. n: IEEE Access 7 (2019), pp. 71907–71920. DOI:
10.1109/ACCESS.2019.2919760. URL: https://doi.
org/10.1109/ACCESS.2019.2919760.

[4] Gustavo anegas, Koen Zandberg, Emmanuel accelli, Adrian
Herrmann, and enjamin mith. “Quantum-esistant ofware
pdate ecurity on ow-Power etworked Embedded evices”.
n: Applied Cryptography and Network Security - 20th Interna-
tional Conerence, ACNS 2022, Rome, Italy, June 20-23, 2022,
Proceedings. Ed. by Giuseppe Ateniese and aniele Venturi.
Vol. 13269. ecture otes in Computer cience. pringer, 2022,
pp. 872–891. DOI: 10.1007/978-3-031-09234-3_43.
URL: https://doi.org/10.1007/978-3-031-09234-
3_43.

[5] Zhaolan Huang, Koen Zandberg, Kaspar chleiser, and Em-
manuel accelli. “T-M: toolkit or over-the-air secure
updates and perormance evaluation o TinyMmodels”. n:
Annals o Telecommunications (2024), pp. 1–15.

[6] François-Xavier Molina, Emmanuel accelli, Koen Zandberg,
idier onsez, and livier Alphand. “Cubedate: ecuring
ofware pdates in rbit or ow-Power Payloads Hosted
on Cubeats”. n: 12th IFIP/IEEE International Conerence on
Perormance Evaluation and Modeling in Wired and Wireless
Networks, PEMWN 2023, Berlin, Germany, September 27-29,
2023. EEE, 2023, pp. 1–6. DOI: 10.23919/PEMWN58813.
2023.10304910. URL: https://doi.org/10.23919/
PEMWN58813.2023.10304910.

[7] rendan Moran, Hannes Tschoenig, Henk irkholz, Koen
Zandberg, and Øyvind ønningstad. A Concise Binary Object
Representation (CBOR)-based Serialization Format or the
Sofware Updates or Internet o Things (SUIT) Maniest. nternet-
raf draf-iet-suit-maniest-25. Work in Progress. nternet
Engineering Task Force, Feb. 2024. 101 pp. URL: https://
datatracker.ietf.org/doc/draft-ietf-suit-
manifest/25/.

[8] henghao Yuan, Frédéric esson, Jean-Pierre Talpin, amuel
Hym, Koen Zandberg, and Emmanuel accelli. “End-to-End
Mechanized Proo o an ePF Virtual Machine or Microcon-
trollers”. n: Computer Aided Veriication - 34th International
Conerence, CAV 2022, Haia, Israel, August 7-10, 2022, Proceed-
ings, Part II. Ed. by haron hoham and Yakir Vizel. Vol. 13372.
ecture otes in Computer cience. pringer, 2022, pp. 293–316.
DOI: 10.1007/978-3-031-13188-2_15. URL: https:
//doi.org/10.1007/978-3-031-13188-2_15.

1.5 HAPTER 1: NTRODUCTION 14

1 . 4 . 1 CODE CONTR IBUT IONS

n addition to academic papers, contributions have been made to the
operating system T [30] to incorporate the results rom the research
into public code. Most notably the inclusion o T irmware update
capabilities [9, 13] in T as deault over-the-air irmware update
mechanism.

[9] chleiser, Kaspar and Zandberg, Koen and Abadie, Alexadre
and Molina, François-Xavier. sys/suit: initial support or SUIT
irmware updates. 2019. URL: https://github.com/RIOT-
OS/RIOT/pull/11818.

[10] Zandberg, Koen. libcose: Constrained node COSE library. 2022.
URL: https://github.com/bergzand/libcose.

[11] Zandberg, Koen. NanoCBOR: CBOR library aimed at heavily
constrained devices. 2024. URL: https://github.com/
bergzand/NanoCBOR.

[12] Zandberg, Koen. rBPF: Initial include o small virtual machine.
2021. URL: https://github.com/RIOT-OS/RIOT/
pull/19372.

[13] Zandberg, Koen. SUIT: Introduction o a payload storage API or
SUIT maniest payloads. 2020. URL: https://github.com/
RIOT-OS/RIOT/pull/15110.

[14] Zandberg, Koen and accelli, Emmanuel. Femto-Containers:
Femto-Containers RIOT Implementation & Hands-on Tutorials.
2022. URL: https://github.com/future-proof-iot/
Femto-Container_tutorials.

uring the span o this work  maintained and contributed more
than 900 code commits to open source sofware projects, including
T [30], libcose [10] and anoC [11].

1 . 5 OUTL INE

This thesis starts with a chapter providing background and related
work on the undamental building blocks at play, including a primary
on cryptography, low-power hardware and sofware, low-power
networking, virtualisation and sandboxing (chapter 2). n the ollowing
chapters, the contributions o this thesis are developed. Post-Quantum
digital signatures are evaluated and compared against pre-quantum
digital signatures in chapter 3. ext the over the air update mechanism
leveraging T maniests are presented in chapter 4. Following is
chapter 5 describing the rPF virtual machine (VM). The design o
rPF is explained andmeasurements to show the runtime overhead
and impact o adding the rPF to a typical irmware are presented. n
chapter 6, Femto-Container is presented as extension on top o rPF.
Finally a case-study using the Cubedate satellite irmwaremanagement
system is presented in chapter 7.

15

CHAPTER 2

BACKGROUND

The embedded devices connected to the internet, know as the oT, are
growing and tend towards instrumenting all aspects o our environment.
To this end, billions o new devices are gradually being deployed on the
one hand, and on the other hand, retro-itting supplements legacy
devices with similar capabilities or communication and on-board
computation. Managing the irmware and other sofware components
on these devices requires a coherent system addressingmultiple
challenges:

• ecure authentication o messages through digital signatures.

• Flexible update mechanisms or irmware.

• ecure execution o potentially untrusted code on constrained
devices.

• ntegration o sandbox environments into the operating system.

For each o these challenges, there exist previous work to address the
challenges. This chapter presents background inormation on the
scope o this work and presents a number o existing solutions to the
challenges involved. First the constraints presented by the hardware
involved and the hardware and sofware capabilities are presented. As
one o the requirements with irmware management heavily involves
security, a quick security primer with relevant security primitives is
given. Following this security primer, irmware updates themselves are
discussed with different existing solutions and challenges involved.
Given the need or digital signatures with irmware updates, a number
o relevant existing post-quantum and pre-quantum digital signatures
are presented. At last virtualisation and sandboxing environments are
presented, with a deeper ocus on WebAssembly and ePF given their
relevance to this work.

2 . 1 HARDWARE CONSTRA INTS

The type o devices deployed here are constrained in processing
resources. Microcontrollers deployed with a cyber-physical purpose
can be classiied [41] based on the resources available on the device.
The resources o these devices ranges between 10 k to 250 k in M
with AM between 1 k to 50 k. While it is expected that the resource
boundaries o constrained devices move over time, gains available

2.2.1 HAPTER 2: ACKGROUND 16

with personal (desktop) computer hardware will not directly translate
to the embedded space. ncreases in computational power will more
likely be invested in power requirement reductions and not necessarily
in increased computer power.

evices in the constrained cyber-physical systems space use small
processor cores. Popular examples o these are the AM Cortex-M
class processor cores [24], C-V processors [94] with limited eature
set, and the Cadence Xtensa processor cores [53]. C-V cores in
particular are extremely conigurable and, depending on the hardware
implementation, can be conigured or everything between large
hardware platorms and small low-power devices. n the scope o this
work the C-V-based microcontrollers are limited in capabilities and
consist o a basic V32 core with limited extensions.

This class o devices is not only constrained in raw processing power,
available peripherals is also limited. Memory protection mechanisms
ubiquitous in personal computers, the MM, are not available, or only
available with very limited capabilities.

2 . 2 NETWORK CONNECT IV I TY

The devices considered here have network connectivity to interact
with other devices. When considering network connectivity, similar
constraints apply as with the processing power on the devices. High-
throughput network connectivity requires power and is ofen not
required or the unctionality o the device. The types o devices
considered in this work ofen connect via low power networking
alternatives such as EEE 802.15.4 [91] or oA-based [112] networks.
Each o these network connections bring their own advantages and
restrictions, which will be elaborated on below.

2 . 2 . 1 I EEE 802 . 1 5 . 4

EEE 802.15.4 network links are optimized or bidirectional communica-
tion with low power in mind. n contrast to WiFi, rame sizes are limited
to 127 , and theoretical throughput limited to 250 kbps. Furthermore,
EEE 802.15.4 provides mechanisms to create mesh networks. n
top o EEE 802.15.4, different protocols can be used to provide rich
network connectivity. ne o the options is Zigbee [19], a ull mesh
network protocol or high-level communication with the aim to create
personal area networks or devices such as small low-power home
automation devices. Another option is 6oWPA [122], which deines a
rame ormat or the transmission o Pv6 packets over EEE 802.15.4
networks. Via 6oWPA, devices can be connected transparently
to the rest o the internet via a so called border router. While the
restriction o 127  rame size still applies, urther header compression
and protocols optimized or constrained networks urther lessen the
burden on the network and devices.

ne o the protocols used in this space is Constrained Application
Protocol (CoAP) [147], a specialized web transer protocol optimized or
constrained devices and networks. CoAP is speciically optimized or

2.3 HAPTER 2: ACKGROUND 17

machine- to-machine applications such as home automation devices
and supports networks limited in throughput. Another mechanism in
CoAP provides discovery o application endpoints. A large number o
extensions are available or CoAP to urther enhance the capabilities:

• An observe mechanism [86] that allows clients to monitor an
endpoint on a server or changes in a lightweight manner.

• lock-wise transers [45] to support transer sizes efficiently
beyond the rame size limitations o the link layer.

• Patch and etch methods [157] to support partial access to
resources on a server.

• bject security [145] to protect resources provided via end-to-end
encryption.

• Echo option [21] to mitigate security issues and orce clients to
demonstrate reachability at its claimed network address.

• esource directories [22] or CoAP to publish available resources
to a central resource directory.

oth 6oWPA and CoAP are developed as open standards reely
available by the nternet Engineering Task Force (ETF).

2 . 2 . 2 LORA

The oa speciication, together with the oaWAMAC layer provide a
low-power and long-range communication standard. Communication
ranges o more than 10 km are possible with data rates up to 50 kbps.
oaWA rames are received bymultiple gateways, which orward
the rames to a centralized network server. The network server then
orwards the rame to an application server provisioned by the device
owner. The network itsel is reliable or moderate loads, but can show
perormance issues with sending acknowledgements [32].

OTHER NETWORK CONNECT IV I TY STANDARDS

ther network connectivity standards are: luetooth ow Energy [171],
arrowband oT [144] and igox [105, 152], among others. A select
number o microcontrollers also have a WiFi network peripheral on
board, with the extra power consumption associated [172] when not
careully tuned or efficiency.

2 . 3 F IRMWARE AND OPERAT ING
SYSTEMS

Given the constrained nature and the limited space available in the lash
o the devices, specialized operating systems have been developed or
these devices. The nature o these devices put severe restrictions
on the irmware running on them [57]. Paradigms ubiquitous to
commodity desktop and server hardware are not always applicable to
the constrained devices. Traditional operating systems such as inux or

2.3.3 HAPTER 2: ACKGROUND 18

Table 2.1: T AM and M usage or
various T conigurations on a 32 bit
Cortex-M0+ microcontroller [30]

T Conigu-
ration

M AM

asic T 3.2 k 2.8 k
6oWPA 38.5 k 10.0 k
Javacript 166.2 k 29.1 k
TA-enabled 111.0 k 17.5 k

 are not applicable to microcontrollers as they cannot run on the
constrained capabilities provided by the microcontrollers.

The purpose operating systems specialized or microcontrollers is to
manage the limited resources on these devices in a power-efficient
way [83, 153]. sually such operating systems provide a simple task
scheduler, providing a notion o parallelization o different task on the
system. Furthermore, access to the different hardware peripherals
available on microcontrollers is usually provided through abstractions
provided by the operating system.

epending on the operating system amore extensive eature set is
available. A network stack, tailored or constrained devices can be
shipped with the operating system, providing connectivity out o the
box. rivers or different peripherals such as common sensors and
actuators can be integrated into the operating system. Furthermore,
rich services such as over-the-air update capabilities and high level
language scripting support is also within reach or some operating
systems. epending on the enabled eatures within the irmware, the
required M and AM by the irmware can increase signiicantly,
potentially exceeding what is provided by the small class 0 type o
devices.

Multiple operating systems exist in active use on microcontrollers, each
with their own goals and eature sets:

2 . 3 . 1 R IOT

T [30] was developed with the requirements or constrained
embedded and networked devices in mind. t aims to provide a
developer-riendly programming model and AP, providing a microker-
nel with multi-threading and a ull 6oWPA network stack. T
is written in C, with support or C++ or libraries. T has a strong
modular approach to irmware and can be compiled in many different
conigurations. A number o conigurations with their M and AM
usage are shown in Table 2.1

2 . 3 . 2 CONT IK I -NG

Contiki-G [65, 131] and the Contiki precursor are both operating
systems targeting constrained devices. The operating systems use an
event-driven approach, relying on a cooperative schedulingmechanism
approach using protothreads. Protothreads provide a lightweight
pseudo-threading mechanism. As the operating system uses coop-
erative scheduling, priorities are not supported and the operating
system relies on each process to yield voluntarily at some point during
execution.

2 . 3 . 3 FREERTOS

FreeT [20] is a popular T used or eal-Time tasks and ported
to multiple platorms. The preemptive microkernel supports multi-
threading. FreeT does not provide a network stack, multiple
third-party network stacks can be used or internet connectivity with

2.4 HAPTER 2: ACKGROUND 19

FreeT. FreeT is currently developed by Amazon Web ervices
and is available under a modiied GP license allowing commercial use.

2 . 3 . 4 ZEPHYR

Zephyr [173] also ollows a microkernel approach with multi-thread
support. Zephyr provides its own network stack, including support or
links oriented towards low-power devices such as EEE 802.15.4 and
luetooth E. Zephyr is developed under the inux Foundation as
operating system or resource-constrained systems.

2 . 3 . 5 NUTTX

uttX [160] is a T under the Apache oundation. Emphasis is
on adherence to technical standards and small ootprint to scale
rom 8bit to 64 bit systems. Main governing standards or uttX are
the Portable perating ystem nterace (PX) and American
ational tandards nstitute (A) standards. nix and other T
interaces are adoptedandadaptedwhereneeded to or the constrained
embedded environment.

2 . 3 . 6 MONGOOSE OS

Mongoose  is an oT irmware development ramework or con-
strained devices. t provides built-in integration or cloud providers
such as AW oT, Google oT Core, Microsof Azure, Adaruit  and
other generic MQTT servers. ver-the-air irmware updates and remote
management is supported out o the box and it supports cryptographic
accelerators andmbed T [110] or security.

2 . 3 .7 TOCK

Tock [108] emphasises security on constrained embedded systems,
leveraging the ust programming language and hardware security
eatures. Tock isolates different sofware components into capsules to
provided memory protection and parallelization.

The lack o MMs onmicrocontrollers restricts operating systems
ofen in terms o isolation capabilities, the process memory isolation
available on commodity hardware operating systems is not a given
onmicrocontrollers. While the MP provides an alternative way o
protecting the memory space o microcontrollers, it has been shown to
be difficult to apply or operating systems [174]. The result o this is
that address space separation is not commonly used, or must be
explicitly designed or in the operating system. For example as used
with the previously mentioned Tock embedded operating system [109].

2 . 4 SECUR ITY PR IM IT IVES

Management o sofware on a device over the network must be
secured to prevent malicious actors rom interering with the device.
Within oT this requirement can be difficult to ensure, as adding extra

2.4.3 HAPTER 2: ACKGROUND 20

security measurements afer deployment is impossible without update
capabilities, and extra care is required to address the security o
devices [73]. This starts with the goals o security themselves.

2 . 4 . 1 SECUR ITY ASPECTS

Three main aspects are to be considered with security [141]:

• Conidentiality: ensuring the transported data is secret and
private.

• ntegrity: ensuring the data is trustworthy accurate, complete,
and uncorrupted.

• Availability: ensuring themachines are accessible or the relevant
actors.

ifferent types o cryptographic primitives have been developed to
address the challenges posed by these aspects [139].

2 . 4 . 2 SYMMETR IC KEY ENCRYPT ION

ymmetric key encryption provides conidentiality based on a single
key shared between senders and recipients. Two types o symmetric
key encryption primitives can be distinguished: block ciphers and
stream ciphers.

lock ciphers operate on ixed-length groups o bytes, termed blocks.
Every type o block cipher uses a mode o operation or encrypting
messages longer than a single block size: counter (CT), cipher block
chaining (CC) or counter with MAC (CCM) among others. As opposed
to block ciphers, tream ciphers operate on individual bits, one at
a time, and the transormation varies during the encryption. The
distinction between these twomodes is not always as clear as some
modes used with block ciphers act effectively as stream cipher, such as
counter mode with AE.

The main symmetric key encryption cipher used is AE [138], a block
cipher with 128 bit blocks. The block cipher is always combined with
different modes to allow or larger messages. Commodity desktop
hardware ofen has specialized hardware available or this block cipher,
and microcontrollers sometimes have a specialized peripheral or AE
operations.

Another common symmetric key cipher is the ChaCha [34], a 256 bit
stream cipher. ChaCha is standardized with 20 quarter rounds and the
Poly1305 MAC code [36] to protect both conidentiality and integrity
in a single cipher [128]. The advantage o ChaCha is the simple
integer operations required per round, restricted to addition, bitwise
exclusive  and bitwise rotations. This ensures that, even with the
limited processing capabilities o microcontrollers, high-throughput
implementations are possible [61].

2.4.4.0 HAPTER 2: ACKGROUND 21

2 . 4 . 3 PUBL IC KEY CRYPTOGRAPHY

Public key cryptography provides cryptographic primitives with pairs
o related keys. ne o the keys o a pair can be public and openly
distributed without compromising the security o the algorithm. Public
key cryptography is used mainly in two ways, digital signatures and
public key encryption.

igital signature primitives allow the owner o the secret key to
generate a signature or a speciic message. Anyone with access to the
public key can veriy that the message was indeed signed by the holder
o the private key and was not tampered with.

Public key encryption allows or encrypting payloads with the public
key o the pair. nly the holder o the private key can decrypt the
message.

Public key cryptography relies onmathematical problems termed
one-way unctions. Current development aims to provide a new set o
primitives resistant to quantum computers, so-called post-quantum
cryptography [37].

igital signatures are used to veriy the authenticity o a message,
where public key encryption is used to ensure both conidentiality
and authenticity o themessage. Examples o primitives used or
public key are the elliptic curves using the P-256 prime ields deined
by ational nstitute o tandards and Technology (T) [156] and
the Curve25519 [35] elliptic curve, which are discussed more in
subsection 2.6.2.

2 . 4 . 4 HASH FUNCT IONS

A hash (or digest) unction is any unction which maps an arbitrary
sized input to a ixed-size output value. As such the resulting hash can
serve as a representative image o the input data. Hash unctions
are used when a ixed-size representation o arbitrary input data is
required, or example with digital signatures the hash o the payload is
signed. Hash unctions are ofen relative easy to compute, while the
inverse operation is nearly impossible. Cryptographic hash unctions
must have special properties desirable or cryptographic applications:

• Preimage resistance: For all possible outputs, it is computation-
ally ineasible to ind an input that hashes to that output.

• econd preimage resistance: t is computationally ineasible
to ind any second input which has the same output as any
speciied input.

• Collision resistance: t is computationally ineasible to ind any
two distinct inputs which hash to the same output.

SHA-256

HA-256 [85, 155] is one o themost actively used hash unctions
currently relevant. t provides a 256 bit hash output based on arbitrary
input.

2.5.1.0 HAPTER 2: ACKGROUND 22

SHA-3

HA-3 is the latest hash algorithm standardized by T [66, 129] hash
algorithm. The hash algorithm is internally completely different rom
HA-256, it is based on the Keccak [38] permutation. This provides an
alternative in case the internal structure o HA-256 is broken.

2 . 5 SOFTWARE UPDATES FOR
CONSTRA INED DEV ICES

An oT irmware update solution is a special case o sofware update,
and requires special care to take the earlier mentioned constraints
o the device and connectivity into account. Mainly, three areas o
work [51] are identiied, namely:

• Embedded sofware design on low-end oT devices.

• ack-end update ramework to describe the irmware update.

• etwork transport o the irmware towards the oT devices.

2 . 5 . 1 EMBEDDED SOFTWARE DES IGN ON
LOW-END IOT DEV ICES

The sofware on an oT device has to be prepared to support a irmware
update mechanism. The device requires a bootloader, the logic that is
executed irst when the device boots and determines which irmware it
launches. ometimes devices are equipped with multiple bootloaders;
or example, a stage 1 bootloader in the M and a stage 2 bootloader
that can be updated. The reason or such designs is security-related as
an update o the bootloader can lead to a bricked device. Whenever a
bootloader is present on a device, the memory layout o the hardware
has to be considered, or example the irmware must be linked in the
correct position (with offset) or the device.

A typical irmware update requires a number o steps:

1. A developer recompiles the code and generates an entirely new
irmware image, which is then distributed to the device.

2. The lash memory o the oT device is split into memory regions
(slots) containing (i) the bootloader and (ii) irmware images
(with somemetadata).

3. The new irmware is stored into one o the available slots.

4. The oT device is then reset so that the bootloader can boot the
new irmware image [15].

This approach is used, or example, by MCboot [161] and EPer [72].
n top o these steps, additional eatures can be added to reduce the
size o the network transer or increase the granularity o the sofware
update. These options are not mutually exclusive and can be deployed
together or additional gains.

2.5.2 HAPTER 2: ACKGROUND 23

PART IAL UPDATES THROUGH DYNAMIC
LOAD ING

ne option to reduce the update size is by increasing the granularity
o the targeted irmware binary. This allows or updating only part
o the binary, instead o the ull irmware binary. Multiple different
approaches to increase the granularity o the irmware image exist.

ne way is to enable partial updates is via dynamic loading o binary
modules [64, 140]. The irmware must support dynamic loading o
parts o the irmware. This allows or targeting speciic areas o the
binary via the updates, targeting only the part where the update is
required.

Another simpler option is using component-based programming [175,
176] aim to simpliy dynamic modiication and reconigurability o
the system on constrained oT devices by enorcing black-box-style
interactions between systemmodules.

Partial updates o sofware can also use scripts instead o binaries [28],
whereby pieces o interpreted language are updatable on devices. nly
the content o the scripts are updated and the irmware responsible or
interpreting the scripts is not updated. Popular environments or this
use Javacript, WebAssembly or Python.

D IFFERENT IAL UPDATES

Another approach to reduce size o the irmware update is to use
differential binary patching [98]. This allows or patching only part
o the binary during an update, decreasing the size o the update.
Compared to partial updates, this does not require separate modules in
the binary, and the ull irmware can be updated with a single update.
A requirement or this is that the exact running irmware used as base
or the differential update is known.

B INARY COMPRESS ION

ightweight compression schemes such as [27] can be used to apply
binary compression to the irmware update [158]. This decreases the
size o the transported binary and shifs part o the burden to the
target device, as the binary needs to be decompressed beore it can be
written to the memory o the device.

2 . 5 . 2 UPDATE FRAMEWORK BACKEND

The second aspect o oT irmware updates concerns the backend
ramework and securing the supply chain o oT sofware. The nternet
Engineering Task Force (ETF) ofware pdates or nternet o Things
(T) working group speciies a simple back-end architecture [126] or
oT irmware updates. n addition to authentication and integrity
protection, even when updates are stored on untrusted repositories,
the T speciications enable encrypting the irmware image, to
protect against attacks based on reverse engineering. T ollowed
previous work such as FE [63] which proposed irmware encryption

2.5.4 HAPTER 2: ACKGROUND 24

and signing using Javacript bject otation (J) and Javascript
bject igning and Encryption (JE).

The pdate Framework (TF) [162] and ptane [104], designed or use
in connected cars, aim to ensure the security o a sofware update
system, even against attackers who compromise the repository or
signing keys. AE [26] builds on TF to improve support or
constrained oT devices by leveraging a trusted intermediate controller
between the update repository and oT device. CHAAC [127] is
another approach that uses a blockchain-like mechanism to attest to
the history o prior updates, even without central authority.

2 . 5 . 3 NETWORK TRANSPORT TO THE
F IRMWARE TOWARDS THE IOT
DEV ICES

The third aspect o oT irmware updates concerns the dissemination
o sofware through the network. As mentioned earlier, the class o
devices is ofen connected via a constrained type o connectivity to a
network. The transport used to disseminate the updates must take this
into account as not to put a too great burden on the network. The
variety o approaches to this topic, as presented in recently published
literature, includes protocols that optimize the dissemination o
updates throughmultiple paths in a multi-hop, low-power wireless
network [90]; updating network stackmodules to reconigure the
network on the ly [176]; and using the Message Queuing Telemetry
Transport (MQTT) protocol to disseminate sofware updates to a leet o
oT devices [72]. 6oWPA protocols [148] enable end-to-end network
connectivity rom constrained oT devices to anywhere on the internet.
The ETF Trusted Execution Environment Provisioning (TEEP) working
group [92] is standardizing a transport mechanism to update trusted
applications running in trusted execution environments (TEEs), such as
Arm TrustZone and ntel GX.

2 . 5 . 4 OPEN STANDARDS FOR SECURE
CONSTRA INED F IRMWARE UPDATES

When considering open standards applicable or implementing
irmware updates in the constrained device space, multiple standards
are available or in active development. ome o these, such as CoAP
mentioned already, provide a transport or payloads suitable or
constrained devices.

The T speciications include an architecture document [126], an
inormationmodel description [125], and a proposal or a maniest
speciication [7].

To achieve its goals, T builds upon anumber o other open standards
that provide generic building blocks. n particular, the Concise inary
bject epresentation (C) [42] speciication is used as a data
ormat or serialization. C is a schema-less ormat optimized or a
small message size using a binary encoding. Furthermore, the C
bject igning and Encryption (CE) [143] speciication is used to

2.5.4.0 HAPTER 2: ACKGROUND 25

cryptographically secure data serialized with C. CE deines a
variety o structures, among them the sign structure, which speciies
how to protect a payload against tampering by using a cryptographic
signature.

When taking TF/ptane [104] as a reerence, or instance, the T
maniest ormat could provide ptane-compliant (custom) metadata
about irmware images. The TF standards neither target interoper-
ability, nor speciy concrete metadata ormatting, contrary to the T
standards.

STANDARDS FOR IOT F IRMWARE TRANSPORT

A number o protocols provide speciications or transerring a irmware
update over the network. asic transport schemes enable a so-called
evice Firmwarepgrade (F) over a speciic low-power Media Access
Control (MAC) layer technology, such as luetooth, or over a speciic
bus technology, such as . n the other hand, to transport irmware
over several hops, or over heterogeneous low-power networks, the
ETF suite o protocols standardized a network stack combining CoAP
over P [147] and CoAP over TCP/T [148]. CoAP offers eatures
equivalent to HTTP but tailored to constrained oT devices. The
6oWPA speciication was designed to offer an adaptation layer or
networks that cannot directly use Pv6. To provide communication
security, T and T proiles [163] were standardized or use in oT
deployments.

F IRMWARE UPDATE METADATA

The irmware update requires extra inormation that describes instruc-
tions or the target device on how the new irmware must be installed
on the device. The ETF T working group is currently standardizing
a ormat or describing irmware updates. The T group deines a
so-called maniest, which provides:

1. normation about the irmware required to update the device.

2. A security wrapper to protect the metadata end-to-end.

STANDARDS FOR REMOTE IOT DEV ICE
MANAGEMENT

ne o the most prominent open standard or oT device management
is the ightweight Machine-to-Machine (wM2M) protocol [132, 133,
134] developed by MA pecWorks, a merger between the pen Mobile
Alliance (MA) and the P mart bject (P) Alliance. To transer
data, wM2M v1.1 uses CoAP, which can be secured with T [163] or
T [44]. The wM2M speciications deine a simple data model and
several ETul interaces or remote management o oT devices. The
interaces enable devices to register to a server, provide inormation
updates, and obtain keying material. A large number o objects and
resources have already been standardized to support commonly used
sensors, actuators, and other resources. Among the standardized
objects is the irmware update object.

2.6 HAPTER 2: ACKGROUND 26

The CoAP Management nterace (CECF) [166] is a more recent
design and standardized by the ETF. CECF uses CoAP and a data
model based on the Yet Another ext Generation (YAG) modeling
language [40], and aims to reuse existing imple etwork Management
Protocol (MP)-deined objects and resources. CECF is still
in development, and a irmware update mechanism has not yet
been deined. uch extension might however be deined in a uture
extension.

The pen Connectivity Foundation, the result o a merger between
the PnP Forum, the pen nterconnect Consortium (C), and the
AllJoyn Alliance, standardizes an oT device management protocol
operating on top o CoAP and T/T or communication, similarly
to wM2M. The CF deines a data model with ETul AP Modeling
anguage (AM) as the data modeling language. While initially
targeting bigger oT devices in smart home environments, the CF is
now also considering other industry verticals.

Earlier work on device management or oT devices use remote
procedure calls instead o a ETul design. For instance T 69 [48],
also known as the CPE WA Management Protocol (CWMP) developed
by the roadband Forum, ormerly known as the  Forum, offers
irmware update unctionality on higher-end oT devices, such as
nternet-connected printers. The successor o T 69, called ser
ervices Platorm (P) [49], was recently released by the roadband
Forum.

2 . 6 AUTHENT ICAT ION THROUGH
D IG ITAL S IGNATURES

Authenticating a speciic payload or veriication on the receiver side is
possible via digital signatures. Providing this security guarantee or
updates is mandatory as otherwise the authenticity o the irmware
update cannot be guaranteed. The payload is signed with the private
key stored and protected by the sender, and the receiver can veriy that
the message has not been tampered with the public key provisioned or
received earlier. For this, the message, signature and public key are
combined in a unction that returns a result indicating a correct or
tampered message.

Multiple different schemes exist providing digital signatures each with
their own properties, including key sizes and signature sizes. ne
main difference between digital signature algorithms is whether the
underlying problem they are based on is resistant against a quantum
computer.

As with pre-quantum cryptography, post-quantum cryptography
is designed to run on regular hardware. However, post-quantum
crypographic primitives aredesigned to resist adversarieswith access to
both classical and quantumcomputers. For pre-quantum cryptography,
adversaries with access to quantum computers can leverage speciic
algorithms [78, 150] to break these cryptographic primitives. When
condisering post-quantum digital signatures, these signatures must

2.6.1.0 HAPTER 2: ACKGROUND 27

provide a similar security level, while providing resistance against
attacks rom both type o computers.

2 . 6 . 1 POST-QUANTUM S IGNATURE
SCHEMES

Multiple different types o post-quantum digital signature schemes
have been developed [149]. These can be classiied based on their
underlying hard problems that guarantee their security.

HASH-BASED S IGNATURES

Hash-based signatures are a orm o post-quantum digital signatures
based on the security o hash unctions. They are among the oldest
digital signature schemes available. The security o hash-based signa-
tures relies on the difficulty o inverting cryptographic hash unctions.
Hash-based signatures in general provide very ast veriication at the
cost o very large signatures. ne o the hash-based signatures has been
standardized as Hierarchical ignature ystem (H)/ eighton-Micali
ignature (M) [118]. The main issue o hash-based signatures is the
stateul nature o the private key, the private key must be update afer
every signature and can be used a limited number o times.

LATT ICE-BASED S IGNATURES

The lattice-based signatures are based on hard problems in Euclidean
lattices. n general, these schemes offer ast signing and veriication as
advantages, but in turn they generate very large signatures. Examples
o attice-based signature schemes are the CYTA-ilithium [113],
Tign [89] and Falcon [71].

MULT IVAR IATE-BASED S IGNATURES

Multivariate signature schemes are based on the complexity o solving
certain low-degree polynomial systems in many variables. Analysis in
the ield o multivariate cryptography [39] questioned the security level
o some o these signature schemes.

I SOGENY-BASED S IGNATURES

sogeny-based cryptography is based on the difficulty o computing
unknown isogenies between elliptic curves. sogeny-based signature
schemes inherit small parameter sizes rom pre-quantum elliptic-curve
cryptography, or example Qign [60]. This property makes them
interesting or microcontroller applications. n the other hand they
also inherit and increased the computational burden caused by the
heavy algebraic calculations o ECC.

CODE-BASED S IGNATURES

Code-based cryptosystems rely on the difficulty o hard problems
o the theory o error-correcting codes. For example the McEliece
key exchange scheme [117] is among the oldest o all public-key

2.7 HAPTER 2: ACKGROUND 28

cryptographic systems. Code-based signature schemes however, are
much less well-established.

ZERO-KNOWLEDGE-BASED S IGNATURES

A relative new category o post-quantum digital signatures use zero-
knowledge-based techniques. They combine algorithms rom symmet-
ric cryptography with technique known as Multi-Party Computation n
The Head [96].

Table 2.2: verview o post-quantum signature candidates. “ecurity analysis” relects the maturity o analysis o the scheme: the
age o the scheme, recent attacks, and how well-studied the underlying hard problem is, are considered.

Paradigm cheme ecurity Analysis ignature Public Key Private key

Hash M Mature 4756  60  64 
PHC+-128 Mature 17 088  32  64 

lattice ilithium ess Mature 2528  1312  2420 
Falcon ess Mature 1281  897  666 

Multivariate ainbow  ot Mature 66  157 800  101 200 
GeM ot Mature 417 416  14 520  48 

sogeny Qign ot Mature 204  64  16 
Code WAVE ot Mature 1625  13M —
Zero-knowledge Picnic3-1 ot Mature 13 802  34  17 

2 . 6 . 2 PRE-QUANTUM ALGOR ITHMS

Multiple types o pre-quantum cryptographic digital signature schemes
are available. For this comparison only digital signature schemes
suitable or implementation on small microcontrollers are considered.

ELL IPT IC CURVE

Elliptic curve cryptography makes use o the algebraic structures o
elliptic curves over inite ields. This provides relative small key and
signature sizes with acceptable veriication speed. Elliptic curves
have been studied extensively with multiple different elliptic curves
available or selection. n the ield o oT the P-256 curve [156] is ofen
used, and available in implementations such as TinyCrypt [93, 114].

EDWARDS-CURVE D IG ITAL S IGNATURES

EdA [35] is a digital signature scheme using a variant o chnorr
signatures based on twisted Edwards curves. The goal is to be aster
than existing digital signature schemes while retaining the same level
o security. Two signature schemes are deined or EdA:

• Ed25519, using Curve25519 with HA-512 hash unction.

• Ed448, using Curve448 with HAKE256 hash unction.

2.7.1.0 HAPTER 2: ACKGROUND 29

2 .7 EMBEDDED SOFTWARE
V IRTUAL ISAT ION AND
SANDBOX ING

A sandbox provides a controlled environment in which sofware can be
executed in ull isolation rom the host system. The main purpose is to
restrict access to critical operating resources while still being able to
execute the sofware. This limited access provides a mechanism to run
sofware without ully trusting the sandboxed application, which could
be malicious or lawed. t provides a sae space to test and analyze
sofware without putting the system at risk. ne possible approach to
sandboxing are VMs.

The vast majority o prior work on lightweight virtualisation run-
times [123] does not target microcontrollers, but microprocessor-class
computers. ecent examples include or instance AW Firecracker [18]
or serverless computing, WebAssembly [82] or process isolation
in Web browsers, or ePF [69, 116] or debug and inspection code
inserted in the inux kernel at run-time.

oughly two types o sandbox environments can be distinguished that
each provide a sandbox environment to the host system. The irst is
the script environment, with the second one being the VM.

2 .7. 1 SCR IPT ENV IRONMENTS

cript environments onmicrocontrollers allow or interpreting and
execution o scripted applications. The applications are written by a
developer and directly loaded on the microcontroller. An optional
in-between step is miniication o the script, where size and execution
overhead caused by optional tokens in the script is removed.

PYTHON

ne popular language running onmicrocontrollers is Python. For
example MicroPython [77] is a very popular scripted logic interpreter
used onmicrocontrollers. Another alternative is CircuitPython [16]
runtime. oth options are geared towards hobbyists and aim or an
easy and rapid development low, while abstracting away the speciics
o the microcontroller used.

mall Python runtimes are used on EP8266 microcontrollers in prior
work such as anoambda [76]. This runtime provides a scheduler
to intelligently place unctions across multi-scale oT deployments
according to resource availability and power constraints.

JAVASCR IPT

Multiple implementations o Javacript environments are also available
or constrained devices [79]. ne advantage o Javacript is the
expressiveness o the language, trading a decrease in script size or
complexity in the interpreter.

2.7.2 HAPTER 2: ACKGROUND 30

Another advantage o original design o Javacript, as scripting
language in browsers, is the event-based nature. This makes it a
good it or power-efficient microcontrollers where tasks can run
on-demand when an event needs to be processed. The rest o the time
the microcontroller can be reduced to a power-efficient sleep mode.

Multiple engines or executing Javacript onmicrocontrollers are
available. sually these engines require additional code, written in the
host language to access unctionality rom the hardware and host
platorm.

Jerrycript [75] is one o these engines. t was initially started by
amsung in 2014, but now supervised and sponsored by the penJ
Foundation. The Jerrycript engine is provided as a library and
integration into a project is required beore it can be used. ne o such
project, provides an ver-the-air updatable environment on top o the
T operating system [29]. However, complementary mechanisms
should be used to guarantee mutual isolation between scripts (such as
ecureJ [103]).

A similar project is uktape [165], an embeddable Javacript engine,
with a ocus on portability and compact ootprint. The engine also
requires a platorm or operating system to host it, but it requires only
minimal unctionality rom the host. uktape is ully compliant with
ECMAcript version 5 and partly version 6.

mJ [54] is another embeddable engine or Javacript. Where other
interpreters try to support the ull ECMAcript standard, mJ intention-
ally does not implement the ull language. The main advantage is a
reduction in required lash and AM, only 50 k o lash and 1 k o
AM is required to host the engine. mJ is mainly used in the Mongoose
 ramework [55] or oT systems.

Espruino [170] is a stand-alone Javacript interpreter with a very
active community and actively developed ecosystem. When used on a
microcontroller, applications can be written entirely in Javacript
without requiring any C or C++ knowledge.

A different approach is used by the Moddable K [88, 121]. nstead o
running a Javacript interpreter on the device, the K compiles the
Javacript into small optimized bytecode. The resulting bytecode can
be lashed on the device and executed by the bytecode interpreter
rom Moddable.

LUA

A ua code interpreter is sufficiently small to embedonmicrocontrollers.
Prior work applied ua as a scripting environment to support dynamic
orchestration o multiple networkedmicrocontrollers [80]. Another
approach leverages a ua VM or partial updates through oaWA-
connected devices [130].

2.7.2.0 HAPTER 2: ACKGROUND 31

2 .7. 2 V IRTUAL MACH INES

Virtual machines are ubiquitous on large server deployments and are
used to isolate different tenants and systems rom each other. This
allows large cloud providers to rent out compute resources without risk.
erver hardware includes hardware support or virtual machines (VMs)
operations to allow or minimal overhead when virtualising sofware.

n constrained embedded microcontrollers, specialized instructions
and support or virtual machines is not available. As mentioned beore,
even memory isolation can be challenging. The environment in which
the VM is used, provides less isolation by deault to the VM runtime and
protection o the host systemmust ully happen rom the VM runtime.
The limited resources provided by the class o devices puts additional
strain on the resources provided to the VM.

JAVA V IRTUAL MACH INES

Java VMs execute Java bytecode. A large number o Java Virtual
Machines [25, 50, 67, 107, 137, 146] are available or constrained
devices.

CapeVM [137] is a Java VM implementation offering a ull sensor node
abstraction. The VM bytecode is compressed to reduce transmission
costs and to save power. The bytecode itsel is compiled ahead o time
to native instructions.

arjeeling [50] uses an adapted Java VM modiied to use a 16 bit
architecture. t is designed or 8- and 16-bit processors or use on
sensor nodes. nly a subset o the Java VM is implemented to reduce
code complexity andmemory usage.

A very speciic application o Java VMs is Java Card. t allows or
running Java-based applications securely on smart cards and other
cryptographic tokens. Choupi  is an MP-hardened Java Card Virtual
Machine [46]. The MP-hardened Java Card Virtual Machine project
aims to secure JavaCard applets running on shared hardware by
utilizing the MP hardware. The MP saeguards executing contexts,
each hosting a Java Card byte code interpreter, conining each applet
within its dedicated context and interpreter. The MP coniguration is
established at compile-time and dynamically reconigured to align
with the executing context.

WEBASSEMBLY

WebAssembly (Wasm) [82] is a virtual instruction set architecture
developed and standardized by the World Wide Web Consortium (W3C)
and primarily aimed at portable web applications. The instruction set
allows or binaries small in size, to minimize transer time to the client.
The sandbox provided by implementations offers strong guarantees on
memory access. oth o these properties aim to ensure security while
requiring only limited memory ootprint on the platorm target.

The WebAssembly VM speciies the use o both a stack and a lat heap
or memory storage. The stack is required by the architecture, and can

2.7.2.0 HAPTER 2: ACKGROUND 32

be conigured to any size. An interace or allocating heapmemory
is provided by the standard. ote that the speciicationmandates
memory allocations in chunks o 64 Ki (pages) which is not always
possible on smaller oT platorms.

TOOLCHA IN & SDK A sofware development kit is available to
write applications orWebAssembly. The ull worklow or development
and executions o applications is depicted in Figure 2.1 Wasm uses
the VM compiler: it is thus possible to write applications in any
language supported by VM, such as C/C++, , ust, and TinyGo among
others. ote that or C and C++, the WebAssembly binaries are created
using the emcc toolchain, which combines the EmK with VM. A
standardized interace is speciied or host access in a PX-like way is
provided by the WebAssembly ystem nterace (WA) standard [167].
t offers standardized access to operating system acilities such as iles,
network sockets, clocks and random number.

INTERPRETER nce the Wasm binary is created, it can be
transerred to the oT device and on which it can be interpreted
and executed, as shown in Figure 2.1. everal interpreters exist, or
example, minimized WebAssembly runtimes adapted to run on 32-bit
microcontrollers were proposed, such as WAM [52] and WAM3 [151].

WAM3 uses a two-stage approach, whereby the loaded application is
irst transpiled to an efficient andoptimized executable ormwhich then
can be executed in the interpreter. WAM has multiple compile-time
tunables to conigure which execution strategy must be used. oth a
Just-in-Time (JT), where the WebAssembly bytecode is optimized to
native execution, and an interpreted execution strategy are available.

TinyGo

ust

C/C++

VM andbox

oT perating ystem

 Facilities

andboxed
Execution

ntermediate
Compilation

Wasm
ytecodeEEMC

indings WA

VM EmK

Figure 2.1: Wasm code development and execution worklow with the WAM3 VM.

EXTENDED BERKELEY PACKET F I LTERS

erkeley Packet Filter (PF) [69] is a small in-kernel VM speciically
or sandboxing small applications transerred rom user-space into
the kernel. riginally its purpose was or iltering network packets,
or example: only passing packets to user space matching a set

2.7.2.0 HAPTER 2: ACKGROUND 33

o requirements. However, some ultra-lightweight virtualisation
approaches have been proposed or microcontrollers. apidPatch [87]
uses an ePF runtime to provide a hot patching ramework or T
irmwares.Within the inux kernel the VM is extended and renamed
to ePF to allow or various purposes not necessarily related to
networking. t provided a small and efficient acility or running custom
code inside the kernel, hooking into various subsystems.

The state-o-the-art ePF architecture is 64-bit register based VM with a
ixed stack. 10 general purpose registers are available together with a
read-only stack pointer. The stack itsel is speciied as ixed at 512 . A
heap is not contained in the speciication, as an alternative the inux
kernel provides an interace to key-value maps as persistent storage
between invocations. These maps can also be interaced with rom
user space applications. The limited stack size and absence o a heap
put only minimal requirements on the AM a platorm has to provide
or the VM.

The VM is suitable or isolating the operating system rom the virtualised
application: all memory access, including to the stack, happen via load
and store instructions. Moreover, branch and jump instructions are
also limited, the application has no access to the program counter and
a jump is always relative to current program counter. The VM does not
provide acilities to directly inluence the program counter. oth o
these can be implemented with the necessary checks in place to limit
access and execution.

nteracingwith the operating system acilities can be done by providing
the necessary bindings on the device. These can then be accessed
during execution rom the VM.

34

CHAPTER 3

COMPARATIVE EVALUATION OF
POST- AND PRE-QUANTUM DIGITAL
SIGNATURES FOR CONSTRAINED
DEVICES

Any communication with networked devices or delivering adjustments
to the device must at least be authenticated with digital signatures.
This is required to prevent unauthorized parties rommodiying the
communication to the device and in turn the behaviour o the device.
Without any proo o origin, the device will not be able to veriy the
origin o the request.

n the space o constrained oT devices a requirement or secure authen-
ticated communication is also present. Protecting the communication
with digital signatures allows the device to veriy the origin o the
communication. Without the option to communicate securely with
constrained embedded devices, devices cannot be securely updated
and can quickly become a liability when they become part o a botnet.

With the device lietime o small embedded constrained devices
measured in years, protecting communication o these devices against
uture development is a must. Post quantum signatures are a strict
requirement with respect to the uture o quantum computing. This
allows or secure communication with these devices even when
pre-quantum cryptography is no longer an option.

n this chapter  present benchmarks on both post-quantum and
pre-quantum digital signatures and show the trade-offs required when
deploying one o these primitives on the devices. This collaborative
work has been presented previously in “Quantum-esistant ofware
pdate ecurity on ow-Power etworked Embedded evices” [4].

3 . 1 IMPACT OF CRYPTOGRAPH IC
PR IM IT IVES ON F IRMWARE

Adding cryptographic digital signature primitives to constrained
devices is not without cost and careul consideration is required with

3.2 HAPTER 3: OMPARATIVE VALUATION OF IGITAL IGNATURES 35

the type and implementation o the library. Cryptographic primitives
implemented or these devices must be written with the resource
constrained nature o the devices in mind. This implies that the imple-
mentationmust not require large amounts omemory andmust not put
a too large computational burden on the processor. fen a trade-off
must be made between the cryptographic strength o the primitive and
the resources required or the operation. ifferent optimizations
are possible or implementations and with unconstrained devices
usually memory is traded in avour o a decrease in computational
cycles. These type o optimizations are not always possible on memory
constrained devices.

Furthermore, other considerations are possible with cryptographic
libraries. For example, a generic big number library can be reused by
multiple cryptographic primitives implemented by a single library, or
the library implements the operation as a specialized unction. When
only a single primitive is required on the device, a big number library
will require more memory on the device.

The extra computational load required by some implementations
does not only increase the response time o the devices. Extra cycles
spent on cryptographic operations also increases the overall power
consumption o the device as the device is active or longer durations.

Another concern is the size o the signature generated by the primitive.
epending on the algorithm used, signatures can grow to sizes that
dwar the size o the payload protected. This in turn can put signiicant
strain on the network connectivity o the device. Furthermore, the
device must hold the ull signature in memory afer the transer to
veriy the origin o the message.

3 . 1 . 1 F I RMWARE UPDATE S IZES AND
POST-QUANTUM S IGNATURES

When considering the impact o post-quantum signatures and their
impact on irmware updates, multiple aspects o the signature algo-
rithmmust be considered. n the embedded devices, only signature
veriication is relevant as that is the only operation required or the
veriication o the irmware binary. ased on the estimates rom
Table 2.1, our broad categories o updates or low-power embedded
oT can be distinguished

1. mall sofware module update, o ≈5 k.

2. mall irmware update without cryptographic libraries, ≈50 k.

3. mall irmware update including cryptographic libraries, ≈50 k.

4. arge irmware update including cryptographic libraries, ≈250 k.

When considering the update protocol itsel, a maniest based on the
T speciication can have a real world size o 419 , excluding the
signature.

3.2.1.0 HAPTER 3: OMPARATIVE VALUATION OF IGITAL IGNATURES 36

3 . 2 CRYPTOGRAPH IC L IBRARY
SELECT ION

The cryptographic libraries compared here implement one o the
existing digital signature schemes. oth post-quantum and pre-
quantum digital signatures are compared, where the pre-quantum
digital signatures are used as baseline or the comparison. Especially
the post-quantum cryptographic implementations must be selected
based on the ollowing properties:

• Key size: The public key must it in the memory o the microcon-
troller.

• Signature size: The signature size puts a burden both on the
memory o the microcontroller and the network transer size.

• Runtime perormance: As mentioned beore, computational
burden o the signature veriication in turn inluences the battery
lie and responsiveness o the microcontroller application.

• Maturity: The post-quantum digital signature schemes have
varying levels o analysis and the security level o some o the
algorithms is still subject o debate.

The T PQC project has dominated research in the post-quantum
cryptography in recent years, with multiple digital signature algorithms
submitted. The candidates resulting rom this project are a natural irst
selection or credible post-quantum digital signature algorithms, as
these have had extensive analysis rom the cryptographic community.
However also older post-quantum schemes can be considered such as
the hash-based signature schemes.

3 . 2 . 1 PRE-QUANTUM S IGNATURE SCHEMES

For the baseline measurements to compare post-quantum digital
signature schemes, a number o pre-quantumdigital signature schemes
and implementations have been selected.

ECDSA IMPLEMENTAT IONS

The ECA implementation used in this work is the TinyCrypt library.
This library is designed by ntel to provide cryptographic standards or
constrained devices, including the T standard P-256 curve.

ED255 19 IMPLEMENTAT IONS

For Ed25519, two libraries are used, both providing constant-time
inite-ield arithmetic based on public-domain implementations.

• C25519: A very small public domain implementation o the
Ed25519 digital signature scheme and the x25519 key exchange.

• Monocypher: Another implementation o cryptographic primi-
tives including Ed25519 digital signatures. The main difference

3.2.2.0 HAPTER 3: OMPARATIVE VALUATION OF IGITAL IGNATURES 37

Table 3.1: Public key sizes o selected
signatures

Algorithm Public Key ize

M 60 
ilithium  1312 
Falcon 897 

Ed25519 32 
ECA P-256 32 

Table 3.2: ignature sizes o selected
signatures

Algorithm ignature ize

M 4756 
ilithium  2528 
Falcon 1281 

Ed25519 64 
ECA P-256 64 

with C25519 is the use o precomputed tables in Monocypher to
speed up the computation o elliptic curve points.

3 . 2 . 2 POST-QUANTUM S IGNATURE
SCHEMES

While a large number o post-quantum signature schemes are available
as shown in subsection 2.6.1, a subset o these are considered or
the evaluation perormed in this chapter. When choosing candidate
signature schemes, key and signature sizes, runtime perormance, and
maturity with respect to security analysis must all be considered.
While the relatively compact parameters o some isogeny- and code-
based signature schemes may make them interesting or uture work
targetingmicrocontrollers, at present these schemes are ar rom
theoretical maturity. The true security level o the T multivariate
and ZK-based candidates is a subject o current debate, though their
extremely large keys and/or signatures would likely eliminate them
rom consideration or constrained embedded devices. The T
PQC project has dominated research in post-quantum cryptography
in recent years. ts candidate cryptosystems are a natural irst port
o call or credible post-quantum signature algorithms, since they
have had the beneit o concerted analysis rom the cryptographic
community — especially the ound 3 proposals, which are candidates
or standardization in the coming years.

However, these are not the only algorithms that should be considered.
For example, among hash-based signature schemes, a comparison
between the older M scheme, which is not a T candidate, with
the newer PHC+ scheme, which is a T ound 3 alternate. M
has smaller computational requirements, but the signer must maintain
some state between signatures; PHC+ is a heavier scheme, but it
is stateless. tatelessness is an advantage or general applications,
as tracking the key state increases complexity on the usage o the
signature scheme. However around the use case o irmware updates,
stateulness is natural, as it corresponds naturally to the version
number on the irmware update. As the constrained embedded device
only requires signature veriication, tracking state o the key is not
relevant on there, so the lighter M is a more natural choice.

For the reasons above, the ocus o the benchmarks is on three
post-quantum signature algorithms: M, ilithium, and Falcon,
representing the hash-based and lattice-based categories. M has
60 public keys and 4756-byte signatures. ilithium , targeting
T security level 2, has 1312 public keys and 2420 signatures.
Falcon-512, targeting T security level 1, has 897 public keys and
666 signatures.

LMS

For M, the Cisco implementation [58] is used with a small mod-
iication, removing calls to malloc since it can lead to memory
ragmentation. This change might lead to some small improvements in
perormance, since the kernel already knows the address at compile-

3.2.3 HAPTER 3: OMPARATIVE VALUATION OF IGITAL IGNATURES 38

time rather than only at runtime. For the benchmark, the smallest
parameters proposed in [118, ection 5] is used: that is, HA–2 with
256-bit output or the hash unction (to keep the code as close as
possible to the original implementation [58]) with tree height 5, and 32
bytes associated with each node. For the MT, 32 bytes and 4 bits
o width or Winternitz coefficients is used. The pen call rom
the original code is removed and change or a implementation o
HA2–256 provided in their repository [58]. Furthermore, H is used
with 2 layers. These parameters satisy the lie cycle o updates: in
particular, the key lietime will never be surpassed by the amount o
updates.

FALCON

The Falcon implementation provided by PQClean [101, 102] is used
without any signiicant structural modiications.

D IL I TH IUM

Two ilithium implementations based on PQClean are prepared [101,
102].

• Dynamic Dilithium is the basic PQClean implementation. The
irst step in signing and veriying is to expand a random seed
given in the public key into a large matrix.

• Static Dilithiummodiies the PQClean implementation to pre-
compute the matrix and store it in the lash memory o the
microcontroller. This makes both signing and veriication aster,
at the cost o using more lash and reducing lexibility. nly the
lashed key can be used to veriy signatures against.

3 . 2 . 3 HASH FUNCT IONS

ne aspect o digital signature algorithms is that they ofen require
a digest unction to operate on. Ed25519 uses the HA-512 digest
unction, ECA has a conigurable digest unction. Furthermore, hash
unctions are ofen used as image and signed instead o signing the
actual payload.

When considering post-quantum attacks on digest unctions, the
outlook is positive. nly a ew quantum attacks against HA–2 and
HA–3 exist. Grover’s algorithmmay be parallelized to ind hash
pre-images [31]. This applies to both Merkle amgård hashes (HA–2)
and ponge-based hashes (HA–3). For collision resistance, the
state-o-the-art in quantum collision search does not drastically reduce
the complexity with respect to classical algorithm [56]. However,
classical attacks or HA–2 might become a reality [62] at some point,
still causing a decrease in security with HA–2.

When considering the hash unctions in the scope o low power
embeddedmicrocontrollers, the main concern is the memory usage
and run time o the hash unction implementation. ne aspect to keep
in mind while selecting a hash unction is a synergy with the selected

3.3.2.0 HAPTER 3: OMPARATIVE VALUATION OF IGITAL IGNATURES 39

signature algorithm. Most post-quantum signature algorithms use
HA–3 in their construction, as candidates or the T post-quantum
signature standard are required to be HA–3/HAKE compatible, the
current  standard. As space on the microcontroller devices is very
limited, actorization o code is typically desirable. electing a single
hash unction or both hashing or images and as hash unction used by
the digital signature algorithms is desirable. When using post-quantum
signature algorithms, matching these with HA–3 hash unctions used
in other modules on the irmware decreases the overall lash ootprint.

3 . 3 BENCHMARKS

3 . 3 . 1 BENCHMARK HARDWARE SETUP

The testbed used or the benchmarks here consists o popular, com-
mercial, off-the-shel hardware. The boards selected are representative
o the modern 32-bit microcontroller architectures available. For the
memory ootprint o the libraries, only the total lash usage o the
library itsel was measured. For the timings, the running time o the
operation and the number o kiloticks, based on the hardware clock
and the time spent, was measured.

• AM Cortex-M4: The ordic nF52840 evelopment Kit. This
board provides a typical AM Cortex-M4 microcontroller running
at 64MHz, with 256 Ki o AM, 1Mi lash and a 2.4 GHz radio
transceiver compatible with both EEE 802.15.4 and luetooth
ow-Energy.

• Espressi EP32: The WM-32 board. This is a small devel-
opment board containing the EP32module with the EP32-
0WQ6 chip on board. t provides two low-power Xtensa
32-bit X6 microprocessors with integrated Wi-Fi and luetooth,
operating at 80MHz, with 520 Ki o AM, 448 Ki o M.

• C-V: The ipeed ongan ano G32VF103CT6 evelopment
oard. This provides a C-V 32-bit core running at 72MHz,
with 32 Ki o AM, 128 Ki o M and no wireless connectivity.

T is used as a base irmware setup or these benchmarks, providing
hardware abstraction and timers to benchmark the implementations.

3 . 3 . 2 PRE-QUANTUM S IGNATURE
BASEL INE

The pre-quantum digital signature algorithms act as a baseline metric
to compare the post-quantum algorithm against.

MEMORY FOOTPR INT

n igure Table 3.3 the lash usage o the pre-quantum digital signature
algorithms is presented. As visible, the Monocypher implementation
requires the most lash on all platorms, with TinyCrypt in the middle
and C25519 requiring the least amount o lash.

3.3.3 HAPTER 3: OMPARATIVE VALUATION OF IGITAL IGNATURES 40

Algorithm Cortex-M4 EP32 C-V

C25519 Ed25519 5106  5608  6024 
Monocypher Ed25519 13 852  17 238  17 328 
TinyCrypt ECA P-256 6498  6869  7452  Table 3.3: Flash usage or pre-quantum

digital signature algorithms.

S IGNATURE GENERAT ION SPEED

The signature generation speed is shown in Table 3.4. Timings are
shown both in milliseconds and in kiloticks or every platorm. ooking
at the signature generation speed, Monocypher is the astest imple-
mentation on all platorms. C25519 is the slowest implementation
here, with TinyCrypt again in the middle.

Table 3.4: ignature generation speed or pre-quantum digital signature algorithms, measured is the time in milliseconds and the
number o clock ticks or signature generation.

Algorithm Cortex-M4 EP32 C-V

C25519 Ed25519 845ms 54 111 kT 921ms 73 690 kT 956ms 68 883 kT
Monocypher Ed25519 17ms 1136 kT 21ms 1709 kT 16ms 1194 kT
TinyCrypt ECA P-256 294ms 18 871 kT 333ms 26 696 kT 270ms 19 489 kT

VER IF ICAT ION SPEED

The veriication speed numbers in general show a similar picture as the
signature speed numbers, as visible in Table 3.5. The veriication speed
is shown again both in milliseconds and in kiloticks or every platorm
benchmarked. oth algorithms needmore time or the veriication,
with TinyCrypt only slightly slower on veriication, but the Ed25519
veriication is a bit over twice as slow.

Table 3.5: ignature veriication speed or pre-quantum digital signature algorithms.

Algorithm Cortex-M4 EP32 C-V

C25519 Ed25519 1953ms 125 012 kT 2165ms 173 205 kT 2242ms 161 475 kT
Monocypher Ed25519 40ms 2599 kT 60ms 4864 kT 41ms 3013 kT
TinyCrypt ECA P-256 313ms 20 037 kT 374ms 29 948 kT 308ms 22 192 kT

ooking at the results in general, themeasurements show a large
difference between the C25519 library and the Monocypher implemen-
tation, even though these implement the same signature algorithm. t
clearly shows that the C25519 library is optimized or lowmemory
usage, where the Monocypher library is build around optimizations to
decrease the algorithm speed. The TinyCrypt library implements a
different signature algorithm and strikes a middle ground in memory
usage and algorithm speed.

3 . 3 . 3 POST QUANTUM CRYPTOGRAPHY
PR IM IT IVES

The selected Post-quantum digital signature schemes are deployed on
the same hardware as the pre-quantum algorithms. As the C-V

3.3.4 HAPTER 3: OMPARATIVE VALUATION OF IGITAL IGNATURES 41

board selected or the benchmarks is too limited in lash storage, the
benchmark application or ilithium in dynamic mode is unable to it
on the lash o the microcontroller and could not be benchmarked on
this architecture.

MEMORY FOOTPR INT

The lash memory ootprints o the post-quantum digital signature
algorithms is shown in Table 3.6 As visible all algorithms require more
than 10 Ki to it on the devices.

Cortex-M4 EP32 C-V

Falcon 57 613  60 358  11 122 
ilithium-dynamic 11 664  12 397  —
ilithium-static 26 672  27 197  25 148 
M 12 864  15 177  15 889  Table 3.6: Flash usage or post-

quantum digital signature algorithms.

S IGNATURE GENERAT ION SPEED

The signature generation o the post-quantum algorithms is shown in
Table 3.7. M is clearly visible as outlier here, requiring multiple
seconds to generate the signature on all platorms. ilithium in both
modes is relative ast among the post-quantum algorithms.

Table 3.7: ignature generation speed or post-quantum digital signature algorithms.

Cortex-M4 EP32 C-V

Falcon 1172ms 75 020 kT 1172ms 93 824 kT — —
ilithium-dynamic 465ms 29 788 kT 87ms 7036 kT — —
ilithium-static 135ms 8655 kT 121ms 9694 kT — —
M 9224ms 590 354 kT 7583ms 606 674 kT 9105ms 655 614 kT

VER IF ICAT ION SPEED

The veriication speed o the post-quantum digital signatures is shown
in Table 3.8. All signature schemes are ast to veriy, with only M
requiring more than 100ms on the different platorms.

Table 3.8: ignature veriication speed or post-quantum digital signature algorithms.

Cortex-M4 EP32 C-V

Falcon 15ms 1004 kT 16ms 1322 kT 13ms 975 kT
ilithium-dynamic 53ms 3407 kT 43ms 3508 kT — —
ilithium-static 23ms 1510 kT 21ms 1706 kT 17ms 1237 kT
M 123ms 7908 kT 101ms 8141 kT 122ms 8808 kT

3 . 3 . 4 HASH FUNCT ION BENCHMARKS

Table 3.9 compares three hash unction implementations on the
memory usage and speed on an AM Cortex M4microcontroller:

3.4.2 HAPTER 3: OMPARATIVE VALUATION OF IGITAL IGNATURES 42

• T’s deault implementation o HA2–256.

• A compact implementation o HA3–256 optimized to minimize
lash memory ootprint.

• An implementation o HA3–256 optimized or speed on Cortex-
M4 AMv7M architectures.

tack is roughly equivalent across the different implementations,
but speed and lash vary widely: HA3–256 can offer slightly aster
execution than HA2–256, but at the price o a 10× larger lash ootprint.
For a lash ootprint similar to HA2–256, the comparative speed o
HA3–256 diminishes drastically or larger inputs.

Table 3.9: HA–2 and HA–3 perormance on the nF52840 AM Cortex-M4microcontrollers

Ticks to hash input
Flash sage tack sage 64  100  1024  10 240 

HA2–256 (T) 1008  384  277 kT 278 kT 1943 kT 17 933 kT
HA3–256 Compact 1692  404  1336 kT 1342 kT 10 402 kT 98 448 kT
HA3–256 ast-AMv7M 11 548  284  220 kT 228 kT 1672 kT 15 732 kT

3 . 4 IMPACT OF POST-QUANTUM
PR IM IT IVES ON EMBEDDED
DEV ICES

3 . 4 . 1 THE COST OF POST-QUANTUM
SECUR ITY

A toe-to-toe comparison between pre-quantum and post-quantum
signatures must consider all o the public key and signature sizes,
running time, and memory requirements. All post-quantum algorithms
have signiicant larger public key and signature sizes, by well over an
order o magnitude. Compared with standard elliptic-curve signature
schemes, Falcon’s public keys are 28× larger and its signatures are 10.4×
larger; ilithium’s public keys are 41× larger than elliptic-curve keys,
and its signatures are 38× larger. M avoids this spectacular growth in
public key sizes, with keys only 1.875× larger than elliptic-curve public
keys; but its signatures are a massive 74.3× larger than elliptic-curve
signatures.

When comparing the running time o the signature primitives, the
post-quantum signatures have their advantages and disadvantages.
ignature veriication is generally considerably aster across all the
devices tested, signing is generally slower however. The comparison o
signing algorithms shown in Table 3.7 and Table 3.4 shows that the
astest post-quantum algorithm runs in 135ms which is 7.94× slower
than the Monocypher Ed25519 implementation. However, the reverse
is true when comparing the algorithms on signature veriication. The
astest pre-quantum algorithm runs in 40ms, which is 2.65× slower
than post-quantum Falcon. Efficient veriication is a required and

3.4.2 HAPTER 3: OMPARATIVE VALUATION OF IGITAL IGNATURES 43

valuable eature or constrained embedded devices, however in this
setting it comes at the price o an increase in stack and lash memory.

3 . 4 . 2 THE COST OF POST-QUANTUM
ALGOR ITHMS WITH F IRMWARE
UPDATES

Considering a real world irmware updates using these post-quantum
digital signature algorithms, the impact o changing the pre-quantum
digital signatures to post-quantum alternatives can be measured. n
practical terms the Tmaniest as proposed in subsection 3.1.1 being
419  large without the signature, increases in size when switching
rom pre-quantum signatures to post-quantum.

• Falcon: 419B + 666B = 1085B, a ≈2.24× increase;

• ilithium: 419B + 2420B = 2839B, ≈5.87× increase; and

• M: 419B + 4756B = 5175B, a ≈9.84× increase.

ow consider the crucial aspect o network transer costs, and the
memory resources required to actually apply the irmware update on
the oT device. s our measurements to evaluate the relative cost o the
entire T sofware update process. Visible is that the impact o
switching to quantum-resistant security in T varies widely in terms
o network transer costs, ranging rom negligible increase (≈1%) to
major impact (3× more), depending on the sofware update use case.

ata Transer
Algorithm Flash tack 2 3

Ed25519 / HA2–256 52.4 k 16.3 k 47 k 53 k

Falcon / HA3–256 +120% +18% +1.1% 120%
M / HA3–256 +34% +1.2% +9% 43%
ilithium / HA3–256 +30% +3407% +4.3% 34%

Table 3.10: elative costs or T with
quantum resistance on the AM Cortex
M4

There are many possible deployments o oT, and several possible
scenarios or oT sofware updates. t is sae to assume that the
authorizedmaintainer, responsible or updating the irmware, has
powerul hardware. Hence, the computational burden o signing is not
the main concern here. n the other hand, a constrained device will be
responsible or signature veriication o the update.

As seen above, the cryptography package does not run standalone in
the board: it must coexist with several other modules (including kernel,
network stack, and libraries), and the application itsel. ne challenge
that was aced in deploying the schemes was sharing stack memory
(and AMmemory). For example, on the C-V platorm used, the
total AMmemory budget available was only 32 k or the whole
system, a small but not uncommon amount o AM or this class o
devices. t was not possible to run ilithium to sign or veriy within
these constraints as the library required more stack than available. n
act the deault stack coniguration required adaptation or all o the
post-quantum algorithms used.

3.5.1 HAPTER 3: OMPARATIVE VALUATION OF IGITAL IGNATURES 44

Table 3.11: Firmware sizes o the
different update options

Firmware ize

1 small module 5 k
2 Firmware 50 k
3 Firmware + crypto 50 k
4 arge Firmware 250 k

Execution speed is another challenge. low signature veriication may
impact real-time applications i special care is not taken. Typically, on
low-power oT devices, there is no parallel computing. For instance,
T  uses a preemptive multithreading paradigm, where a single
thread is running at any given time.  signature veriication takes a
long time, running in a high-priority thread, then the system blocks on
this task until completion. t is thereore necessary to careully tune
the priority o the crypto veriication thread so as not to stop other
unctionally essential tasks, especially i signature veriication is slow.

3 . 4 . 3 REAL-WORLD USAB IL I TY OF
POST-QUANTUM D IG ITAL
S IGNATURES

When considering the our irmware updates rom subsection 3.1.1 (as
shown in Table 3.11) and the choice o post-quantum digital signature
or each.

n the case o option 1, a small module update o 5 k, and option 2,
the small irmware update without the cryptographic library, the
package contains the sofware update and the signature. n this case
speed and signature size are themost important actors. n these
cases, Falcon has a large advantage over M and ilithium.

When option 3 is considered, the irmware includes the cryptographic
library, the situation is more complicated. oth the signature size, but
also the lash impact o the cryptographic library must be considered.
oth o these are transerred over the network when updating the
irmware. As the size o the network transer also impacts the duration
o the irmware update, a small difference in veriication speed is
quickly dwared by a large increase in network transer time due to
more lash usage. As shown in Table 3.10, when these actors are
considered, M presents itsel as the best trade-off between lash size,
network transer cost, veriication time and stack usage.

n the case o option 4, the large network transer costs overwhelm the
other costs, reducing the comparative advantages o one post-quantum
signature over another. From the point o view o cryptographic
maturity, M is the saest choice. As noted in subsection 2.6.1,
hash-based problems have received extensive cryptanalysis rom the
cryptographic community, while the security o structured lattice-based
schemes like Falcon is less well-understood. evertheless, compared to
the pre-quantum state o the art, M imposes a signiicant increase in
signature size and running time, which has a major impact on irmware
update perormance. Thus, despite its relative lack o maturity, the
perormance characteristics o Falcon make it extremely tempting or
applications with smaller updates.

3.6 HAPTER 3: OMPARATIVE VALUATION OF IGITAL IGNATURES 45

3 . 5 D ISCUSS ION

3 . 5 . 1 COMPAR ISON TO PRE-QUANTUM
D IG ITAL S IGNATURES

Comparing the post-quantum digital signatures currently consid-
ered, there exist a large differences with current state-o-the-art
pre-quantum digital signature schemes. When comparing the two
different categories, public key sizes and signature sizes together with
thememory requirements and running timemust be considered.
Current post-quantum digital signature schemes all have larger public
key and signature sizes, generally by wel over an order o magnitude.
Comparing current elliptic-curve signature schemes, Falcon’s public
keys are 28 times larger and signatures are 10 times larger. ilithium’s
public keys are 41 times as large as elliptic curve public keys and
signatures are 38 times larger. M avoids the growth in public key
sizes, with a slightly below 2 times increase in public key size, however
the signatures are 74 times larger than current elliptic curve sizes.

When considering the computational time o the post-quantum digital
signatures, the comparison is more mixed. ignature veriication is
generally relative ast compared to the elliptic curve signatures on the
tested platorms. The astest post-quantum algorithm, Falcon, requires
13ms to 16ms on the tested platorms, where the astest pre-quantum
signature requires between 40ms to 60ms. However, the ast signature
veriication o Falcon comes at the cost o requiring signiicant lash and
moderate amount o stack or the implementation to work. ignature
generation is in general slowerwith post-quantum signatures compared
to the pre-quantum signatures. The astest post-quantum algorithm
sits between 121ms to 135ms, which is almost 8 times slower than
Monocypher at 16ms to 21ms. Considering thememory requirements,
the post-quantum digital signature schemes require signiicantly more
lash and stack memory. Even the stack usage can grow over 11 times
compared to the pre-quantum implementations.

3 . 5 . 2 IMPACT ON REAL WORLD SCENAR IOS

Considering real-world scenarios where a payload must be authenti-
cated on a constrained device, the public key must be provisioned
on the device. While considerably larger than pre-quantum algo-
rithms, all post-quantum algorithms have public key sizes that can be
accommodated on these devices.

A larger issue is the signature size o the algorithm as this has to be
transerred to the device over a constrained and lossy link. Furthermore
the signature must it in the memory o the target device to veriy it.
epending on the exact deployment scenario in which the digital
signature is required, the extra cost o the transer o the post-quantum
signature can be dominant compared to the actual protected payload.

3.6 HAPTER 3: OMPARATIVE VALUATION OF IGITAL IGNATURES 46

3 . 6 CONCLUS ION

This chapter provided an experimental study o available post-quantum
digital signatures and the cost o transitioning rom pre-quantum
signatures to post-quantum signatures on constrained embedded
devices.  compared the perormance o standard pre-quantum
cryptography to selected post-quantum digital signatures in the
same constrained environment on three low-power oT platorms,
representative o the current landscape o 32 bit microcontrollers.
 show that it is possible indeed to upgrade rom classical 128 bit
security to T evel 1 post-quantum security on these platorms.
However  show that, based on the measurements, both in memory
requirements and computational burden, the perormance varies
signiicantly between algorithms and implementations. etween
implementations M usage can vary between 1 to 30× and processing
time can vary between 1 to 2000×.

The work here shows which uture-proo digital signatures can be
used to secure network communication. These algorithms can be
used to secure irmware updates and other communication even in a
post-quantum scenario. While practical quantum computers are not
viable yet, with the average lietime o embedded devices around 5 to
10 years, the concern is realistic andmust be protected against.

However, digital signature do not provide added value in isolation,
and exist to protect a payload. They provide the required protection
needed or authenticated communication with networked devices,
or example to provide a irmware payload. epending on the exact
payload protected, the relative increase on the network burden can
be more or less signiicant. ased on this, a careul consideration is
required, as to which post-quantum algorithm puts the least burden on
the requirements or the device.

47

CHAPTER 4

SECURE FIRMWARE UPDATE
FRAMEWORK FOR LOW-POWER
INTERNET OF THINGS

imilar to unconstrained networked devices, the nternet o Things
requires a secure update mechanism to adjust the irmware running
on devices. n the previous chapter, cryptographic primitives or
authenticating messages are evaluated. These can be used to protect
the irmware updates against malicious actors.

ver-the-air irmware updates are an essential part o networked
embedded devices. ugs, including vulnerabilities, in the irmware can
be resolved via irmware updates and new eatures can be introduced.
This makes incorporating an updatemechanism in any accessible
device a undamental requirement.

Within the heterogeneous space that is the nternet o Things, a generic
mechanism to deliver irmware updates to a large number o devices
is required. This acilitates the ability to updatemultiple different
devices via the same inrastructure, without the need or dedicated
logic or different device types. As different devices use different
network and communication technologies, a need exists or a transport
independent mechanism or delivering the update.

To acilitate these requirements, a maniest ully describing the
irmware update is designed. This maniest describes the steps
required to apply the update, and includes checks to validate the
applicability o the update itsel.

This work is mainly based on previous work “ecure Firmware pdates
or Constrained oT evices sing pen tandards: A eality Check” [3].
Furthermore the work is described as open standard in A CBOR-
based Firmware Maniest Serialisation Format[124], which has been
superseded by a new version: A Concise Binary Object Representation
(CBOR)-based Serialization Format or the Sofware Updates or Internet
o Things (SUIT) Maniest[7]. The work here is used or the T-
M toolkit [5]. Furthermore, this work resulted into a number o
contributions to the T operating system, spread over multiple pull
requests and commits listed in Table 4.1, o which a number have been
merged into the sofware base.

4.1.1 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 48

Table 4.1: T-related contributions to T

escription Pull equest

pkg: add support or libcose #8895
suit: nitial minimal C-based T maniest parser #10315
T: provide maniest validation module #11118
nr52: use cortexm.ld script when applicable #11127
suit: cleanup o TinyC to anoC reactor #13354
suit: emove non-standard hello handler #13385
tests/suit_v4_maniest: Add test or maniest parsing #13440
T: pdate to draf-iet-v3 #13486
suit/transport/coap: Make use o exposed tree handler unction #13688
T: pgrade to draf-iet-suit-maniest-09 #14436
suit: ntroduce per-component lags #15092
suit: Move policy check to beore etch #15093
T: ail etch i the image size doesn’t match expected #15094
T: ntroduction o a payload storage AP or T maniest payloads #15110
suit: Move common storage.c to module directory #15136
suit/storage/lashwrite: use riotboot_slot_offset #15306
stm32{2,4,7}: nitial lashpage support #15420
examples/suit_update: Add compatibility with native #15994

4 . 1 UPDATE ARCH ITECTURE

A irmware update is amulti-step process that, given the heterogeneous
space, does not ollow a ixed process. ifferent types o devices
have different requirements on network links and storage options.
Furthermore, different types o updates exist, not limited to irmware
and coniguration. To allow or this type o lexibility, the update
process is described by a maniest, which is parsed and processed by
the target device. This maniest describes the steps required by the
device to retrieve and install the irmware update.

The overall update process ollows the ollowing steps:

1. The device is notiied via a push or polling mechanism that a
new update is available or installation.

2. The maniest or the update is retrieved or processing on the
device.

3. The device veriies the authenticity o the maniest.

4. The device parses the maniest and checks whether the irmware
update is applicable to the device.

5. The new irmware is retrieved by the device based on inormation
rom the maniest.

6. The irmware is veriied and installed according to instructions in
the maniest.

7. ased on the maniest, the new irmware is invoked.

4.1.6 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 49

4 . 1 . 1 DEV ICE UPDATE NOT IF ICAT ION

The irst step provides a mechanism or the device to be notiied
that a newmaniest is available or consumption. This requires the
device to have some network connectivity to a central repository or
orchestration server. Themechanism can be either a push-based
mechanism, actively notiying the device o the available maniest, or a
poll based mechanism. For example, or irmware updates it could be
sufficient to check only daily or updates with a central authority.

4 . 1 . 2 MAN IFEST RETR IEVAL

Whenanewmaniest is available, ismust bedownloaded andprocessed
on the device. This requires network connectivity to the device and
limited memory to store the maniest on the device or processing. A
protocol such as CoAP [147], suitable or constrained devices, can be
used here to retrieve the maniest.

4 . 1 . 3 MAN IFEST AUTHENT IC ITY
VER IF ICAT ION

The maniest itsel is protected rommalicious actors by authenticating
it via a digital signature or Message Authentication Code (MAC). This
requires the device to contain a root o trust via which to authenticate
the update. y itsel the cryptographic signature only protects against
modiication to a maniest. However, an old maniest can still be
submitted to a device to orce it to downgrade to a vulnerable irmware.
To protect against this attack, the maniest contains a serial number
which must be incremented or every newmaniest. The device is only
allowed to process a maniest i this serial number is greater than any
previously applied maniest.

4 . 1 . 4 F IRMWARE UPDATE APPL ICAB IL I TY
CHECKS

As the environment consists o multiple heterogeneous devices, not
every irmware is applicable to every device. To prevent an accidental
installation o invalid irmware, the maniest can provide a set o
checks to veriy whether the irmware is applicable to the device. This
allows a device to reject a irmware when it must not be applied to the
device.

4 . 1 . 5 F IRMWARE RETR IEVAL

Themaniest contains the location where the irmware can be retrieved
by the device, and a location where it must be stored on the device.
The device retrieves the irmware by itsel rom the location, which can
again be a CoAP-based .

4.2 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 50

4 . 1 . 6 F IRMWARE AUTHENT IC ITY
VER IF ICAT ION

The authenticity o the irmware itsel is protected via a digest contained
and protected by the maniest. This allows the device to guarantee the
integrity o the new irmware. Afer veriication, the new irmware can
be installed by the device in the inal location. epending on the exact
architecture used by the device, the new irmware can be downloaded
directly to the installation location and wiped i the authenticity could
not be veriied.

4 . 1 .7 F IRMWARE INVOCAT ION

Finally, afer installing the new update, it must be invoked by the
device. sually this involves a reboot o the device to start the new
irmware. Themaniest can instruct the device to invoke the new
irmware immediately afer installation, or wait or a speciic event or
instruction beore invoking the new irmware.

While this architecture provides the option to also update the irmware
via out-o-bandmechanisms and is not restricted to networked devices,
in this work the ocus lies with networked devices. However it is
possible to deliver the maniest and irmware over interaces such as
 or -232 or similar mechanism.

4 . 2 F IRMWARE REQU IREMENTS

The steps involved to parse and apply a maniest and in turn update to
a new irmware involves a number o services and components to be
available on the device. These must be provided by the sofware
components handling themaniest, usually the currently running
irmware.

A network stackmust be provided by the irmware to receive both
the maniest and the irmware. Firmware images are ofenmultiple
kilobytes in size, sometimes exceeding 100 Ki. This requires a network
stack on the device capable o handling such transers. n the
constrained device side, a protocol such a CoAP can handle this via
the block-wise transer mechanism, using the block1 and block2
options.

The maniest itsel must be parsed on the device. This involves a parser
or C [43] object to parse both the maniest and the cryptographic
envelope protecting the maniest.

Furthermore, the device must be able to veriy the authenticity o the
maniest. For this a root o trust and the necessary cryptographic
primitives must be available on the device to veriy the digital signature
in the maniest.

The running irmwaremust also contain the capability to write the
received irmware to persistent storage, ofen the lash memory o
the device itsel. When the bootloader is involved in writing the new

4.3 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 51

Table 4.2: T pre-installation
condition checks

d ame Argument

1 Vendor denti-
ier

UUID

2 Class dentiier UUID
3 evice denti-

ier
UUID

4 mage Match Digest
5 mage ot

Match
Digest

6 se eore Time
7 Minimum at-

tery
Integer

8 pdate Autho-
rised

Integer

9 Version Integers
10 Component ff-

set
Integer

Table 4.3: T pre-installation
directives

d ame Argument

1 Wait ntil Time
2 ay o Week Day
3 Time o ay Time
4 attery evel Integer
5 External Power –
6 etwork iscon-

nect
–

update to the inal location, the bootloader must have this capability
instead.

epending on the exact architecture, a bootloader must also be
present on the device. The bootloader must either install the new
irmware over the previous irmware, or boot the newest irmware rom
multiple available slots. This depends on whether a single irmware
slot is used where the bootloader installs the new irmware. A second
option is to use multiple slots. n this case, the running irmware would
install the new irmware in a different slot. The bootloader then boots
the newest irmware available among the slots. n the latter case the
bootloader does not require persistent storage write capabilities.

4 . 3 MAN IFEST DES IGN

Themaniest describes the metadata involved in obtaining the payload,
the devices to which it applies, and the cryptographic inormation
protecting the maniest. The maniest is encoded using the C data
ormat and is structured based on several key components elaborated
on below.

First is the outer wrapper structure. This contains the authentication
block, the maniest itsel and a number o optional elements or
extensions. The envelope ensures that processing can be done in a
modular way without substantial complexity.

The authentication block inside the envelope contains a CE authen-
tication block, using either a signing or MAC type CE object. The
CE [143] authentication blocks, consisting o either a sign or Mac
type CE object, provide the cryptographic authentication required
or the maniest. Via this authentication container the ull maniest,
and in turn the update payload, is protected against tampering by
unauthorized parties.

Themaniest itsel, inside the envelope container, contains the ull
inormation or applying the update. This starts with a structure version
or indicating compatibility. The next value is a sequence number. This
sequence number ensures protection against replay attacks, where old
maniest are resubmitted to a device to orce a irmware downgrade.
This sequence number must always be higher than previously decoded
maniest, ensuring protection against replay attacks.

The rest o the maniest structure, inside the envelope, contains
inormation on how the payload should be applied to the receiving
system. This contains the set o payloads, any dependencies, a set
o pre-installation instructions, installation instructions and post-
installation instructions. Furthermore some human readable text can
be included and a Concise ofware dentiication Tag can be included.

The pre-, post- and regular installation instructions consist o a number
o condition checks and directives controlling the ull installation
process. The condition checks, as visible in Table 4.2, allow the
receiving device to reject the update based on these conditions.  one
o the preconditions do not succeed, the maniest is rejected. This or

4.4.1 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 52

example allows or rejecting a maniest received by the incorrect
device hardware. The directives, as shown in Table 4.3 contain more
active instructions or the device to act upon. This includes waiting or
an external event or time to happen, or example waiting or the device
to be plugged into an external power source.

The installation ino contain a number o elements to help the receiving
device to retrieve and process the binary or the update. For each
payload component in the maniest to be installed on the receiving
device, this element supplies the critical inormation needed or that
payload. This includes the size o the payload and the location where
to retrieve the payload rom. Another essential element is the digest
over the payload, which protects the payload rom tampering via this
digest, which is in turn protected by the CE element in the outer
wrapper.

Finally the post installation ino contains directives and conditions
which can be used or urther actions or the device afer a successul
installation. For example the device can be instructed to reboot afer
the maniest has been applied. The post installation conditions can be
used to veriy the state o the device afer the update has completed.

4 . 4 IMPLEMENTAT ION OF SECURE
F IRMWARE UPDATES

4 . 4 . 1 SCENAR IO SETUP

[todo] ework
Prior work [126] outlines requirements or irmware updates o oT
devices, and lists various common deployment scenarios. The common
scenario used here is that o a low-power oT device as target or the
irmware update. The oT device is connected through a low-power
low-throughput wireless network to a device management server,
which runs on the internet.

The scenario assumes an oT maintainer, or irmware developer,
in charge o maintaining the irmware and o updating the device
when required. ver the lietime o this oT device, an authorized oT
maintainer should be able to:

1. Produce irmware updates that are integrity-protected and
authenticated;

2. Trigger the device to etch (via push or pull) and veriy the
integrity and authenticity o a irmware image, and then reboot;

3. elegate authorization to another maintainer, in case o new
ownership or change o contracts, the same technique is used to
switch trust anchor when it expires or has to be revoked;

4. econigure the device so that cryptographic algorithms can be
upgraded, i needed.

There are several aspects not explored in the prototype:

4.4.2.0 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 53

ootloader

Firmware mage 1

Metadata

Firmware mage 2

Metadata

Figure 4.1: Microcontroller lash
memory layout

• nly the case where the entire irmware is replaced is considered,
differential updates are out o scope

• The ocus is on the use o asymmetric cryptography or digital
signatures, even though a symmetric key solution is also possible.

• Firmware encryption is not supported.

• Proprietary protocols are avoided, the ocus is on open source
sofware and open protocols. Thereore, the optimization
potential is not explored. The results should thereore be
interpreted as representing the ”lower bar”.

The prototype is designed such that multiple conigurations are
possible. For example, to switch crypto algorithms, crypto libraries,
and network stacks. This code can be executed on oT hardware rom
different vendors. This provides with a good basis or comparing
different eatures.

4 . 4 . 2 COMPONENTS AND FUNCT IONAL
OVERV IEW

The prototype utilizes the ollowing building blocks:

• The irmware metadata ormat based on the ETF T maniest.

• The 6oWPA, Pv6, and CoAP transport stack present in T.

• The wM2M oT device management solution.

• igital signature algorithms based on Ed25519 and ECA
P-256r1.

The T operating system is used or this prototype, but the results
can be transerred to other real-time operating systems. Within T,
both the build system and the code have been adapted to incorporate
the prototype. The remainder o this section provides a unctional
overview o the prototype.

I OT DEV ICE COMMISS ION ING

From the embedded sofware point o view, the prototype irmware
layout is based on the design shown in Figure 4.1. The lash layout
consists o:

1. Aminimalistic bootloader, invoking thenewest irmwarebetween
the two slots.

2. Two irmware image slots in lash memory, each preixed with
space or their respective metadata structures.

3. A basic irmware update module, also implemented on top o
T, integrated into each irmware image.

The T build system is extended to enable a maintainer to simultane-
ously build and lash (through the serial or  port) the bootloader
and the initial irmware in the irst slot. The initial irmware includes a

4.4.2.0 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 54

sofware module or irmware updates, conigured with the necessary
trust anchor o the maintainer.

TRUST ANCHOR

ur model is based on a single trust anchor, namely o the authorized
maintainer. This trust anchor is used to veriy the authenticity o the
signed irmware image.  an attacker manages to trick the maintainer
into handing out the private key associated with the trust anchor, the
attacker can load malicious irmware images onto the oT device. An
attacker could make the compromisedmaintainer signmalicious
irmware images. Alternatively, the compromisedmaintainer could
relinquish authorization to the attacker. There is no mitigation when
the only trust anchor used is compromised. This prototype relies on
the maintainers’ ability to keep their private keys secure. Extensions
using a ull public key inrastructure, potentially with a hierarchy o
keys, is possible but out o scope or this prototype.

PRODUC ING AND UPLOAD ING AN AUTHOR IZED
F IRMWARE UPDATE

The existing build system o T is extended so that a maintainer, a
sofware developer, can simultaneously build a new irmware image
and produce the corresponding metadata, signed with the private key
o the maintainer. The irmware and signed metadata can then be up
loaded to the oT sofware update server, using an HTTP-based AP.
The update server is a web server, which can speak both HTTP and
CoAP. t interaces with the maintainer o the irmware and with the
oT device.

F IRMWARE UPDATE MODULE

The irmware update module’s main tasks are to retrieve the irmware
image andmaniest rom the update server, to parse and veriy the
maniests, and to store the irmware image on lashmemory. The
module implements the required buffering between the network
packet size and the device lash page size. When a lash page buffer
is ull, the module writes the buffer to the next lash page in the
(non-active) irmware image slot. Afer the entire irmware image
has been written to lash, the module computes a hash and checks
that this hash is identical to the hash announced in the transerred
irmware’s metadata. The receivedmetadata is cryptographically
veriied with the help o the trust anchor (the public key stored on the
device).  the digital signature is veriied, and i other security checks
pass (or example, the irmware sequence number is conirmed to be
newer), the module also writes the metadata to the lash (otherwise,
the metadata is blanked) and launches a reboot. The bootloader
then reads the metadata rom the two available irmware slots and
chooses to boot the newest valid irmware, based on the metadata.
ote that, due to blanked metadata, an interruption (e.g. due to power
loss) cannot cause the system to boot o an invalid, corrupted or
incompletely received image.

4.5.1 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 55

SCHEDUL ING F IRMWARE UPDATES

sing the irmware update module, updates can be (i) either triggered
periodically or on demand, (ii) pushed to the device or pulled rom
the device [63], so as to it other operational constraints. n the
device the real-time, preemptive multi-threading capabilities o T
is used, such that the system is not blocked by the computational-
intensive task o digital signature veriication. n practice, signature
validation runs in a separate thread, with low priority, enabling other
threads with top priority to execute as needed. However, note that
advanced ine tuning is not done or the schedule o irmware updates
(e.g. to guarantee the continuity o some service provided by the
device, or to optimize network load). nstead, the ocus is primarily on
the undamental embedded system characteristics and constraints
imposed by standard-compliant irmware update on-board constrained
oT devices.

L I FE CYCLE MANAGEMENT

y changing the trust anchor stored in the next irmware’s update
module, authorization to update the irmware can be delegated to
another maintainer, who can take over the production and the roll out
o authorized updates.

Crypto agility is straightorward because the update module in the new
irmware image can implement and use upgraded cryptographic
primitives. This lexibility is provided because the cryptographic
primitives are implemented ully in the irmware.

Key roll-over is also made possible with the ability to update the trust
anchor.

4 . 5 CONF IGURAB IL I TY OF THE
PROTOTYPE

The prototype designed can be conigured in multiple ways, as
summarized in Table 4.4.

Firmware Pv6 tandardized evice
pdate upport Maniest Mgmt

aseline × ✓ × ×
asic-TA ✓ × × ×
Pv6-TA ✓ ✓ × ×
T-TA ✓ ✓ ✓ ×
wM2M-TA ✓ ✓ ✓ ✓ Table 4.4: Analyzed Conigurations.

The ollowing conigurations have been created:

4 . 5 . 1 BASEL INE

The aseline coniguration covers a typical sensor scenario, and is
introduced here only as a reerence, to evaluate the relative cost

4.5.4 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 56

o over-the-air (over-the-air (TA)) irmware updates. Thereore,
this coniguration does not provide irmware update unctionality.
The aseline coniguration uses 6oWPA over EEE 802.15.4 as a
network stack. A CoAP server is installed on the oT device to respond
to requests or sensor data and to actions that trigger an actuator.

4 . 5 . 2 BAS IC -OTA

This coniguration enables over-the-air irmware updates pushed
directly rom the update server to the oT device, over the Media Access
Control (MAC) layer, without a standard network layer. Thereore, this
asic-TA coniguration requires that the oT device and the update
server can communicate directly over the MAC layer. n other words,
they have to be on the same local network or bus. The asic-TA
coniguration uses minimalistic irmware metadata in a proprietary
ormat, namely:

• A sequence number.

• The irmware start address and size.

• A digest o the irmware image.

• A digital signature o the metadata.

4 . 5 . 3 I PV6 -OTA

This coniguration enables the asic-TA coniguration by using an
Pv6-compliant network stack. The Pv6 network layer implementation
is provided by the T Generic (GC) network stack. CoAP block-wise
transer (block1) is used because P limits the size o the irmware
image to be transerred to 65.507 bytes and, more importantly, to
avoid the inefficiency caused by P ragmentation.

4 . 5 . 4 SU IT-OTA

This coniguration implements irmware updates ollowing the ETF
T maniest [124]. Compared to Pv6-TA and asic-TA, T-
compliant irmwaremetadata offers more eatures and additional
security guarantees (see section 4.9).

The T maniests used in our prototype contain the ollowing
inormation:

• The irmware version number.

• An 8-byte nonce.

• A monotonic sequence number, or which a nix time stamp is
used.

• A single condition: limiting the validity o the maniest to our
device.

• The ormat o the irmware.

• The size o irmware.

4.7 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 57

• A storage identiier.

• A single  to allow the device to download the irmware.

• A HA256 digest.

• A digital signature on the maniest.

pon receiving a maniest, the oT device checks the signature, and, i
veriied correctly, pulls the irmware rom the  indicated in the T
maniest. To pull the irmware image, again CoAP block-wise transer
(CoAP block2 option) are used. t would be possible to attach the
irmware to the maniest, but using this two-step approach gives us
extra lexibility.

4 . 5 . 5 LWM2M-OTA

This coniguration adds support or wM2M v1.0, without the use o
the bootstrapping unctionality. The device registers to a wM2M
server and provides the necessary AP endpoints complying with
the wM2M speciication and the core objects, such as the wM2M
Device and the wM2M Firmware Update objects. The irmware
is updated by pushing a T maniest to the Package resource ound
in the wM2M Firmware Update object ollowed by the worklow
corresponding to the T-TA coniguration.

n the analyzed conigurations above, T/T was not used between
the oT device and the update server or device management server or
wM2M. mplementing T/T is certainly useul when considering
the larger device management unctionality in addition to the irmware
update. An analysis o oTdevicemanagement unctionality is, however,
outside the scope o this chapter.

4 . 6 PERFORMANCE EVALUAT ION

For the evaluation, commercially available hardware based on Arm
Cortex Mmicrocontrollers is used. The ollowing hardware rom three
different vendors is used:

• Atmel AM21, which eatures a Cortex M0+ MC with 32 k o
AM and 256 k o lash.

• TM32F103EY, which eatures a Cortex M3 MCwith 64 k o
AM and 512 k o lash.

• ordic nF52840, which eatures a Cortex M4 with 256 k o AM
and 1 M o lash.

The TM32F103EY and the nF52840 are clocked at 64MHz, while the
AM21 runs at 48MHz. n the ollowing measurements, the code is
compiled using GCC 7.2.0 or Arm optimized or code size.

To evaluate cost in this comparative evaluation, the memory required,
both lash and AM, and the CP perormance is measured. These
metrics are decisive in terms o hardware costs and in terms o energy
costs [59] on these constrained devices.

4.7 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 58

Component ootloader aseline asic-TA Pv6-TA T-TA wM2M-TA

Core 2 760 13 976 10 913 13 241 14 388 14 175
etwork 0 26 892 2 732 26 892 27 230 27 208
CoAP 0 1 876 1 910 1 910 2 286 2 676
Crypto 0 308 5 798 5 886 6 472 6 472
CE & C 0 0 0 0 3 181 3 181
T 0 0 0 0 1 575 1 551
TA 0 0 2 007 2 007 3 998 3 475
wM2M 0 0 0 0 0 2 166

ub-total per image 2 760 43 052 23 360 49 936 59 130 60 904
Total lash ootprint 2 760 43 052 49 544 102 696 121 084 124 632

Table 4.5: Flash requirements, in bytes, per component and coniguration, on Cortex M0+.

Component ootloader aseline asic-TA Pv6-TA T-TA wM2M-TA

Core 800 2 410 1 317 2 410 3 914 3 919
etwork 0 11 010 7 224 11 010 11 010 11 026
CoAP 0 1 536 2 560 2 560 1 024 1 024
Crypto 0 28 28 28 60 60
CE + C 0 0 0 0 512 512
T 0 0 0 0 296 272
TA 0 0 632 632 2 984 3 000
wM2M 0 0 0 0 0 1 487

Total 800 14 984 11 760 16 640 19 800 21 300

Table 4.6: AM requirements or bytes o statically allocated stack, per component and coniguration, on Cortex M0+.

4 .7 RELAT IVE IMPACT OF
CRYPTOGRAPH IC L IBRAR IES

n constrained embedded devices, the use o cryptography signiicantly
impacts memory and power budgets. To get an idea o the signiicance
o the impact, both the relative memory budget and time spent due to
crypto or the asic-TA coniguration o the prototype is measured,
while using the HAC crypto library [177]. First, the time spent on
different tasks is shown in Figure 4.2. The bulk o the time and thus
energy is spent on signature veriication and network transport. The
rest o the time is spent on the parsing o the network packets, irmware
metadata parsing and validation, this time and energy is negligible (less
than 2%) when compared to the signature veriication and network
transport. ote that this remains true with other conigurations o our
prototype as well, using amore elaborate network stack (CoAP) or
more elaborate metadata (T). ext, it is observed in Figure 4.3
that cryptographic unctions represents 50% o the memory budget.
Going back to Figure 4.2, it seems at irst sight that time spent during a
irmware update is dominated by network transer with 60%, then
signature veriication with 38%. However, observe that, since hal o
the irmware image size is contributed by cryptographic unctions, this
means 30% o the time is spent on transerring updated cryptographic

4.8.1 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 59

etwork transer

60%

ignature veriication

38%

Misc
2%

Figure 4.2: Time spent per subtask in a
irmware update.

Crypto
51%

Kernel
30%

etwork
13%

TA
m
odule

6%

Figure 4.3: Flashmemory budget
per system component. asic-TA
coniguration, 35k lash in total.

unctions inside the irmware over the network, hal the total network
transer time. n effect, the conclusion is that handling cryptography
dominates, accounting in act or 68% o the total time spent on the
irmware update process.  conclude that choosing an appropriate
cryptographic algorithms and library, offering a good compromise on
code size and veriication speed, is crucial. n the ollowing section,
this topic is discussed in greater detail.

4 . 8 EVALUAT ING THE COST OF THE
OTA UPDATE FUNCT IONAL ITY

To evaluate the cost o the irmware update unctionality, the AM and
lash memory overhead incurred by this unctionality is measured and
compared in the prototype or the various conigurations deined in
section 4.5. The lashmemory ootprints (total and broken down
per component) are shown in Table 4.5, while Table 4.6 shows the
AM requirements calculated or the stackmeasured on an Atmel
AM21 (using a Cortex M0+, the most constrainedmicrocontroller
used in these experiments). n these two tables the bootloader is
listed separately as it is present on the device alongside as shown in
Figure 4.1.

The different components o the system are distinguished as ollows:

• The core component combines the minimal basic operating sys-
tem unctionality, including drivers. The newlib-nano standard C
library is also included.

• The crypto component includes cryptographic algorithms, such
as digest algorithms, the digital signature algorithm, the elliptic
curve cryptography and big number library together with the
pseudo random number generators.

• The network component includes the protocol stack rom the
radio driver up to the transport layer protocol P.

• The modules that enable a irmware update to be received and
stored in lash memory are combined in the OTA component.

• CoAP reers to the CoAP protocol stack.

• COSE+CBOR contains the libraries or CE parsing and C
parsing.

• SUIT relates to the code parsing a T maniest.

• Finally, LwM2M contains the code or device registration, and unc-
tionality required or the wM2M protocol to perorm irmware
updates (particularly the wM2M evice and Firmware pdate
objects).

4 . 8 . 1 THE COST OF OTA

The cost o basic TA unctionality can be measured by comparing the
memory requirements o the aseline coniguration with that o the

4.8.2 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 60

Pv6-TA coniguration. n a per-image basis, the lash overhead
comes rom the need or additional modules to perorm necessary
crypto (5 k) and to handle TA (2 k). However, the prototype needs
two image slots with metadata and a bootloader. Thereor, the
comparison is with the aseline lash ootprint against twice the
lash ootprint o Pv6-TA added with the bootloader ootprint (see
Table 4.5). n total, the relative overhead in lash memory ootprint
is 137%, 59 kmore. ote that this overheadmeans that the lash
memory budget crosses over rom below 64 k to below 128 k. The
largest part o the overhead comes rom the doubled image slots. The
ootprint o the rest (bootloader and metadata) is small: approximately
3 k o lash or the bootloader and a single lash page or the metadata
o each image.

4 . 8 . 2 THE COST OF STANDARDS
COMPL IANCE FOR OTA

The use o standards-compliant speciications, such as T and
wM2M, increases the memory ootprint due to the extra unctionality
provided. Where the AC-TA scenario used a irmware TAmecha-
nism optimized or the scenario, using standards-compliant update
mechanisms add extra capabilities not leveraged by the scenario. For
example, serialization, metadata processing, and object handling all
add extra processing andmemory overhead. This is expected.

bserve that the relative overhead per image, compared to the aseline
scenario, is small. This is because a lot o eatures present in the
irmware are reused within the network module o each coniguration.
Furthermore, it is not unlikely that, TA unctionality aside, applica-
tion code already leverages C, CE, and other cryptographic
unctionality. n such cases, the extra memory overhead per image alls
to approximately 10%. This type o sofware reuse is a clear advantage
o using building blocks leveraging existing standards.

Compared to the 124  o metadata transerred over the network with
the asic-TA coniguration, 226  o metadata need to be transerred
with the T-TA coniguration (counting ull CE data).

ue to the lash memory alignment constraints on the oT device, this
overhead has no effect on the lash memory ootprint, because 226
bytes typically it on a single lash page. For example, 256 bytes it
on a single lash page on the Atmel AM21, the most constrained
microcontroller used in the measurements.

Extending our measurements to the T maniest case, the code has
to be extended with components required by the T speciication.
A T module and the necessary serialization and cryptographic
unctions increase the lash size by 10 K compared to the simple TA
scenario. While the CE and the Cmodules are here speciically
required or T compliance, in a real-world scenario these modules
could also be used or sensor data encoding and application data
encryption.

sing wM2M compatible handlers or this increases the lash size by

4.9.1 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 61

another 2 k because o the need to implement the mandatory wM2M
handlers and the registration protocol. These components must be
implemented by every device that is wM2M-compliant and should
not be considered as overhead purely related to having over-the-air
update unctionality.

Finally, observe that none o the conigurations experimented with
exceeds the thresholds o 32 k o AM and 128 k o lash memory.
Although our prototype could be urther optimized, it its the nature o
constrained oT devices used in the market today.

4 . 9 SECUR ITY ASSESSMENT

Typical threats against a irmware update solution are discussed in
the T inormationmodel [125] and can be categorized into the
ollowing list:

• Tampered irmware

• Firmware replay attack

• ffline device attack

• evice irmware mismatch

• Firmware installation lash memory location mismatch

• nexpected precursor irmware image

• everse engineering o the irmware

• evice resource exhaustion

ased on these threats,  assess and compare the security o our
prototype in the Pv6-TA, T-TA, and wM2M-TA conigurations,
which are deined in section 4.5. The summary o our assessment is
shown in Table 4.7.

Pv6- T- wM2M-
TA TA TA

Tampered irmware ✓ ✓ ✓
Firmware replay ✓ ✓ ✓
ffline device × × ✓
Firmware mismatch × ✓ ✓
Wrongmemory location ✓ ✓ ✓
nexpected precursor × ✓ ✓
everse engineering × × ×
esource exhaustion × × ✓

Table 4.7: ecurity Assessment
ummary or different conigurations.
The ✓shows which threat vectors are
protected against by the different
conigurations.

4 . 9 . 1 F IRMWARE TAMPER ING

An attacker may try to update the oT device with a modiied and
intentionally lawed irmware image. All conigurations are protected
by digital signatures against this attack vector. To counter this threat,
the Pv6-TA, T-TA, and wM2M-TA conigurations use digital

4.9.5 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 62

signatures to ensure integrity o both the irmware and its metadata.
Additionally, the device can veriy that an authorized maintainer signed
the irmware image via this signature.

4 . 9 . 2 F IRMWARE REPLAY

An attacker may try to replay a valid, but old irmware with known
vulnerabilities. This threat is mitigated by using a sequence number
inside themaniest, where devices reject the updatewhen the sequence
number is not higher than any previously seen valid maniests. All
three conigurations use such a sequence number, which protects
them against this attack vector.

4 . 9 . 3 OFFL INE DEV ICE ATTACK

An attacker may cut communication between the oT device and the
update server or an extended period o time. Then, they may try to
update the oT device with a (known-to-be-lawed) irmware image,
which has in themeanwhile been deprecated. Pv6-TA does not
provide any mitigation against this threat.

Following the T speciication, a best-before time stamp can
be used to expire an update. However, this requires the oT device
to have an approximate knowledge o the current date and time,
whichmay not be available on constrained oT devices. Thereore,
our T-TA coniguration does not mitigate this threat either. nly
the wM2M-TA coniguration may protect against this attack since
wM2M offers an integrated way to provision the device with date and
time inormation.

4 . 9 . 4 DEV ICE F IRMWARE M ISMATCH

An attacker may try replaying a irmware update that is authentic, but
or an incompatible device. The Pv6-TA coniguration does not
provide mitigation against this threat, the coniguration does not have
a device-speciic identiier in the protocol. The T-TA and the
wM2M-TA conigurations include device-speciic conditions in the
maniest. These conditions can be veriied beore installing a irmware
image, thereby preventing the device rom installing and invoking an
incompatible irmware image.

4 . 9 . 5 FLASH MEMORY LOCAT ION
M ISMATCH

An attacker may attempt to trick the oT device into lashing the new
irmware to the wrong location in memory. Tomitigate this attack,
Pv6-TA, T-TA, and wM2M-TA speciy the intendedmemory
location o the irmware update. The simple update mechanism
with Pv6-TA contains a irmware address which states the location
where the irmware has to be installed. The T maniest contains an
opaque string to speciy the location. oth these mechanisms suitably
prevents a irmware rom being installed in the wrong location. This
way the device can veriy that an update is installed in the correct

4.9.8 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 63

location, preventing mismatches between the irmware location and
the expected location o the new irmware.

4 . 9 . 6 UNEXPECTED PRECURSOR IMAGE

When using an incremental update scheme, where there is a tight
coupling between the installed irmware version and the irmware
version rom the update, a match between the two versions is essential.
An attacker may try to exploit a vulnerability that results rom a
mismatch between previously installed irmware and the new irmware.
While the prototype only uses ull irmware images, extending it to
incremental updates is possible. While Pv6-TA does not mitigate this
threat, T-TA and wM2M-TA enable speciying the precursor
sofware that must be installed beore the update can be applied,
enabling modular or incremental updates. The simple irmware update
scenario doesn’t support a precursor image, it must not be used with
incremental updates to prevent this vulnerability rom being abused.

4 . 9 .7 F IRMWARE REVERSE ENG INEER ING

The irmware image in transmission can be captured by an attacker or
vulnerability analysis. either the Pv6-TA coniguration nor our
T-TA coniguration protect against eavesdropping end-to-end,
rom the maintainer to the oT device. ote that the T speciication
also deines the ability to encrypt the irmware image [164]; however,
the prototype here does not make use o this eature. The use o ()T
in the T-TA or wM2M-TA conigurations can also protect the
irmware image against eavesdropping in-light, while transmitted over
the network, but doesn’t offer end-to-end security without the extra
protection offered by using T.

4 . 9 . 8 RESOURCE EXHAUST ION

eceiving, veriying, and storing a new irmware is an operation that
typically uses up a signiicant amount o resources on a constrained
oT device. As discussed in chapter 3, signature veriication, both pre-
and post-quantum, can take several seconds depending on the library
used. y repeatedly attempting raudulent irmware updates, an
attacker may deplete the device’s battery or, more generally, make it
unavailable or long periods o time. For example, an attacker who
manages to transmit valid maniests without a valid signature to an oT
device at regular intervals can drain the battery.

The Pv6-TA coniguration does not mitigate this threat, but the
T-TA coniguration lowers the impact by veriying the maniest
beore downloading the irmware image. However, an attacker could
still push invalid maniests at any rate, causing the oT device to
perorm signature veriications. sing wM2M, an additional layer o
deense can be added by only processing maniests that are conveyed
via the device management inrastructure. n this way, the oT device
trusts the wM2M server to only orward maniests that pass the
ollowing security checks:

4.10.4 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 64

• The  in the maniest points to a irmware update server
under the control o the wM2M inrastructure.

• The maniest signature has been veriied correctly.

• ther conditions in the maniest (such as the best-beore time
stamp) have been processed successully.

 the device management server is compromised, the security charac-
teristics o the wM2M-TA coniguration all back to those o the
T-TA coniguration.

4 . 1 0 D ISCUSS ION

4 . 10 . 1 MAK ING THE F IRMWARE UPDATE
REL IABLE IS KEY

With the system described, the maintainer is expected to test the
new irmware properly beore rolling it out. At a minimum, the new
irmwaremust be able to update itsel onemore time over-the-air.
Guarantees beyond this minimum requirement, such as the use o
watchdog timers and the ability to use a “actory reset”, all into the
realm o traditional embedded sofware management and increase the
lash memory requirements. Without taking these considerations into
account, ailures, like those reported with the Taiwanese Youike
service [99] and the Japanese X-ray telescope satellite Hitomi [119], are
likely to occur again.

4 . 1 0 . 2 USE DELEGAT ION CAPAB IL I T I ES
WITH CARE

As the system allows the maintainer to transer its authority to another
entity, the maintainer is entrusted with the responsibility o not
transerring authority to malicious entities.  the maintainer is the
owner o the device, trust is not an issue; otherwise, maintenance o
oT sofware is typically o a contractual nature, and the caveats o
such trust are well-trodden territory. An improvement o the system
could use protectedmemory and/or a dedicated crypto hardware
module to validate authority transer.

4 . 1 0 . 3 SH IELD ING AGA INST RESOURCE
EXHAUST ION AND BEST-BEFORE
VULNERAB IL I T I ES

The extent to which an oT device is protected against resource
exhaustion attacks depends on the resources o the irmware update
server in the wM2M-TA coniguration. The aspect o dimensioning
the server’s resources to counter potential o attacks is covered by
extensive prior work in the domain. n the end, due to extreme lack in
resources, constrained oT devices remain intrinsically vulnerable.

4.11 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 65

4 . 1 0 . 4 REAL-WORLD REQU IREMENTS MAKE
F IRMWARE UPDATES COMPLEX

n this chapter the ocus o the efforts on themost basic scenario
outlined in [126] and reinements were not considered. Examples o
such reinements are: irmware encryption, updating devices with
multiple microcontrollers, complications due to policy handling,
differential updates, or more efficient distribution using multicast.
Encryption, or example, raises the question about key management.
n a world where sofware components are developed, maintained, and
updated by different developers, additional challenges arise. While the
advantages are known romweb development, there are questions
about how to trace component versions and their composability with
other sofware libraries, how to sandbox components in constrained
oT devices, how to accomplish aster time tomarket in regulated
industries where sofware development requirements and testing are
much harder than on the internet, and so on.

4 . 1 0 . 5 IOT SOFTWARE UPDATES ARE NOT
JUST FOR CR IT ICAL
INFRASTRUCTURE

nterdependence between networks has dramatically increased over
the past ew decades. Enabling and securing irmware updates is
necessary or all oT devices. oth those that are inside the inras-
tructure perimeter, or example, industrial sensors, and outside the
inrastructure perimeter, such as consumer smart appliances. For
instance, a recent study [154] shows how the power grid is indirectly
vulnerable to o attacks rom hacked consumer appliances in
smart homes. sing simulations, the study shows how a botnet
controlling a relatively small number o connected water heaters and
air conditioners could maliciously disrupt power demand and take
downmost o a large power grid serving an area as large as Canada,
affecting tens o millions o people.

4 . 1 1 CONCLUS ION

n this chapter, open standards have been surveyed, which provide
generic building blocks or secure irmware updates on constrained oT
devices.  build a basic prototype, bundling such standard building
blocks and avoiding proprietary components as much as possible.
With this the security characteristics o the resulting system have been
assessed, and showhow it brings state-o-the-art security to oT devices.
The cost o enabling the irmware update solution in our prototype is
bearable, in terms o the required memory and computation, with the
currently available oT hardware.  demonstrate that it is possible to
implement a generic, standards-compliant irmware update solution
on oT devices without exceeding the typical thresholds o 32 Ki o
AM and 128 Ki o lash memory.

ncluding a irmware update mechanism in oT devices is a must-have
security measure against uture vulnerabilities. The need to secure

4.11 HAPTER 4: ECURE IRMWARE PDATE RAMEWORK FOR O 66

constrained devices in the ield exacerbates this need. However the
mechanism to update irmware through T can be leveraged or
other payloads beyond irmware iles. Compartmentalization o
irmware through virtualisation can help reduce the update size when
only the affected module requires updates.

The ability granted by the T maniest to instruct a device to retrieve
and install a payload is not limited to irmware. While the reasons to
enable irmware updates are numerous, the ability to update any
payload on the device such as individual modules and off-chip code
can be leveraged in multiple ways.

ne such way is to use T to update the application running inside
small VMs. n this scenario the T maniest speciies where the
application code o the VMmust be retrieved rom and where it should
be installed to. ne such VM is rPF presented in chapter 5.

67

CHAPTER 5

RBPF: A TINY SOFTWARE-ONLY
VIRTUAL MACHINE FOR INTERNET OF
THINGS FIRMWARE

n the previous chapter, this thesis has presentedmechanisms resolving
irmware vulnerability via secure over-the-air updates. This allows or
resolving existing vulnerabilities when discovered. However, this
assumes vulnerabilities are ound, and it does not protect against
undiscovered and unpatched vulnerabilities.

mall virtualmachines hosted on embeddeddevices can act as sandbox
or the device, to isolate and reconigure part o the application code.
These can be conigured to be isolated rom the main microcontroller
by deault, preventing them rom interering with the irmware on the
device.

While a number o virtual machines speciically or embedded systems
already exist, none o these are promising in terms o memory ootprint.
sually these virtualmachines requiremultiple tens o kilobytes o lash
memory and signiicant AM to operate, making them cumbersome to
add to existing irmware.

n this chapter, a VM, rPF, is introduced as tiny sofware-only VM to
isolate sofware components inside. With rPF, two use cases are
considered:

• solating high-level business logic, updatable on demand re-
motely over the low-power network. This type o logic is rather
long-lived, and has loose (non-real-time) timing requirements.

• solating debug/monitoring code snippets at low-level, inserted
and removed on-demand, remotely, over the network. Compara-
tively, this type o logic is short-lived and exhibits stricter timing
requirements.

The content in this chapter is published as “Minimal Virtual Machines
on oT Microcontrollers: The Case o erkeley Packet Filters with
rPF” [1] in PEMW 2020 – 9th FP/EEE nternational Conerence on
Perormance Evaluation and Modeling in Wired and Wireless etworks.
Furthermore, the rPF VM has been submitted to the T operating
system or inclusion in a pull request [12].

5.2 HAPTER 5: R:  INY OFTWARE-ONLY IRTUAL ACHINE FOR O 68

5 . 1 DES IGN GOALS &
REQU IREMENTS

For the rPF VM designed in this work, a number o design goals are
set. These goals are to ensure that rPF is a proper it or the use case.

5 . 1 . 1 M IN IMAL MEMORY FOOTPR INT

rPFmust require a minimal memory ootprint. mall microcontrollers
are already constrained on resources by their design. till a regular
irmware with ull capabilities or the design goals o the particular
embedded systemmust be programmed on the device. Given that
running rPF is not the main purpose o the system, it must not take up
unreasonable amount o memory on the system, but leave the bulk o
the resources to the main application and irmware running.

5 . 1 . 2 NO REL IANCE ON
HARDWARE-SPEC IF IC MECHAN ISM
FOR MEMORY PROTECT ION

Multiple types o hardware memory protection systems are available
on current generation microcontrollers. However, whether these are
available on a given microcontroller depends on the model and the
manuacturer. The design o rPF is such that no assumptions aremade
on the availability o these kind o hardware-speciic mechanisms.
nstead sofware-basedmemory protection is used where memory
protection is based on policies loaded into the VM on execution.

5 . 1 . 3 TOLERABLE CODE EXECUT ION SLUMP

Any interpreter is bound to be slower than native instruction execution.
Even more so when the interpreter must cover the security aspects
involved in protecting the host system. The rPF VM is no exception
on this. While a code execution slump is expected and rPF is not
designed or ast execution, the slow down incurred must be tolerable
or executing small applications in limited time.

5 . 1 . 4 SMALL APPL ICAT ION CODE S IZE

The applications loaded into the VM are likely to be transerred over-the-
air to the system running. These applications are updated occasionally
and thus must not incur a signiicant burden on the rest o the network
around the system. n turn this means that the application size
overhead must not be too large. As such, ormats such as executable
and linkable ormat (EF) contain more inormation than strictly
needed and would incur signiicant overhead on the transer. nstead
the binaries to be loaded in rPF must be lean and not incur signiicant
overhead.

5.2.1 HAPTER 5: R:  INY OFTWARE-ONLY IRTUAL ACHINE FOR O 69

5 . 2 V IRTUAL MACH INE DES IGN

The rPF VM is a variant o the inux ePF VM, designed to execute
ePF instructions as emitted by a compiler. The main difference lies in
the bindings provided to the operating system and the events by which
execution is triggered. An overview o how the VM is integrated into
T is shown in Figure 5.1. The VM runs as a regular thread inside
the operating system, restricted by the scheduler to the conigured
run priority. Within the rPF VM, the sandboxed application is only
guaranteed to have access to a persistent key-value store. Further
integration with the operating system is available through bindings,
including access to acilities relevant to oT applications such as sensor
values and CoAP packet creation.

5 . 2 . 1 EXECUT ION HOOKS

The VM execution is geared towards short lived and event triggered
applications. Execution is triggered by events in the operating system
when an application is added to the respective event hook. These
hooks are added to speciic conditions inside the operating system
such as network packet reception. The application running inside the
VM is expected to be short-lived, updating an intermediate result or
ormatting a response to a request. The VM does not interere with
real-time thread execution on the operating system. However, the VM
itsel is not suitable or running hard real-time applications, as this is
not part o the design requirements.

solated andbox

adio

CoAP tacketwork tack

bpf_execute()

Application tore

Application tore

Admin

hook(irewall) hook(coap)

cript
etch

tore

Figure 5.1: ntegration & sandboxed
execution o rPF VM in host .

As shown in Figure 5.1, multiple sources can trigger the execution
o a script. This includes requests received on the CoAP server or
packets passing through the network stack. Each event can trigger a
different rPF application rom the application store, conigured by the
administrator. imilar to ePF the VM supports both an argument
passed to the application and a return code rom the application
back to the calling event. This can be used to communicate vital

5.2.2.0 HAPTER 5: R:  INY OFTWARE-ONLY IRTUAL ACHINE FOR O 70

63 31 15 11 7 0

mmediate offset 
C


T opcode

Figure 5.2: ePF instruction ormat

rPF andbox

Host
memory

bp

cript

tack

...

egisters

A
ranch

CheckAC

oad &
tore

Fetch & ecode Program
counter

Figure 5.3: rPF execution and
memory architecture

Table 5.1: rPF arithmetic instructions

pcode Pseudocode

0x07 dst += imm
0x0f dst += src
0x17 dst -= imm
0x1f dst -= src
0x27 dst ×= imm
0x2f dst ×= src
0x37 dst /= imm
0x3f dst /= src
0x47 dst |= imm
0x4f dst |= src
0x57 dst &= imm
0x5f dst &= src
0x67 dst <<= imm
0x6f dst <<= src
0x77 dst >>= imm (logical)
0x7f dst >>= src (logical)
0x87 dst = -dst
0x97 dst %= imm
0x9f dst %= src
0xa7 dst ^= imm
0xaf dst ^= src
0xb7 dst = imm
0xbf dst = src
0xc7 dst >>= imm (arithm)
0xcf dst >>= src (arithm)

execution context with the VM and pass a return value back to the
initiator. With these capabilities the VM application is isolated rom the
operating system, while retaining enough lexibility to host business
logic applications, or simple measure and debug applications.

5 . 2 . 2 ARCH ITECTURE

The VM is based on a simple loop design, iterating over the application
instructions as shown in Figure 5.3. The interaction between the
instructions, the sandbox guards in place, and the host address space
is shown. oth the registers and the application stack reside in the AM
o the host.

To prevent some overhead during the execution o the loaded applica-
tions, saety checks are perormed beore execution where possible.
Every instruction is checked or validity o the opcode, the supplied
registers, and where applicable the jump offset o branch instructions.
This is designed as a single scan pass over the instructions o the
loaded application.

INSTRUCT ION SET

The ePF applications used directly by rPF consist o sequences o
64-bit instructions. Each ePF instruction consist o an opcode, source
and destination registers, an offset and an immediate bit ield as
shown in Figure 5.2. ot all instructions use all bit ields, and unused
ields must be zeroed.

5.2.3 HAPTER 5: R:  INY OFTWARE-ONLY IRTUAL ACHINE FOR O 71

01234567

mode size clacss

Figure 5.4: ePF load and store
instruction opcode ormat

01234567

op

M
M class

Figure 5.5: ePF jump and branch
instruction opcode ormat

For the load and store type instructions, the opcode ield is structured
along Figure 5.4. The opcode class subield speciies a load or
store instruction. The size speciies the number o bits operated on,
allowing or 8 bit to 64 bit or load and store instructions. Finally the
mode ield speciies the type o load instruction. While different modes
o load instructions might be developed at some point, rPF only
implements memory loads and stores, th mode ield is always set to
0x3.

The load and store instructions available in rPF are shown in Table 5.2.
nstruction 0x18 ollows a slightly different pattern. This instruction
uses the size o two instructions to combine the two 32 bit immediate
values into a single 64 bit value, which is loaded into the dst register.
The second instruction used or its immediate has all other ields o the
instruction zeroed out.

Jump instructions also have their own sub ormat in the opcode
encoded as shown in Figure 5.5. The compare operation is encoded in
the op ield. The IMM ield is cleared when the comparison is against
theimmediate o the instruction, i it is set the comparison is between
the SRC and the DST registers.

5 . 2 . 3 MEMORY PROTECT ION

epending on the instruction to be executed, different protection
mechanisms are activated. Twomain protection mechanisms are in
place to isolate the code executed in the VM. ne protects against
illegal load and store instructions, the other prevents code execution
outside the loaded application.

First the host address space is isolated rom the sandbox by policies
loaded in the VM, there is no memory translation to the address space
as visible rom within the VM. Access to the address space is guarded
via sofwarememory protection built into the VM. Every memory
access, including stack reads and writes, are subjected to access
policy rules. ifferent address space sections can be conigured to
allow reads, writes or both by the caller o the VM. This offers minimal
overhead or memory access while providing the guarantees required
or the sandbox.

econd is the protections on the code executed to ensure that the

Table 5.2: rPF load and store instructions

pcode tore nstruction Pseudocode

0x63 *(u32 *) (dst + off) = src
0x6b *(u16 *) (dst + off) = src
0x73 *(u8 *) (dst + off) = src
0x7b *(u64 *) (dst + off) = src
0x62 *(u32 *) (dst + off) = imm
0x6a *(u16 *) (dst + off) = imm
0x72 *(u8 *) (dst + off) = imm
0x7a *(u64 *) (dst + off) = imm

pcode oad nstruction Pseudocode

0x61 dst = *(u32 *) (src + off)
0x69 dst = *(u16 *) (src + off)
0x71 dst = *(u8 *) (src + off)
0x79 dst = *(u64 *) (src + off)
0x18 dst = imm

5.3.1 HAPTER 5: R:  INY OFTWARE-ONLY IRTUAL ACHINE FOR O 72

VM does not start to execute code outside the supplied application
such as gadget deployed by an attacker. Themechanismworks by
guarding the branch and jump instructions, ensuring that the jump is
not outside the application address space. As the virtual program
counter can only be adjusted by jump instructions, the only guard
required is to ensure that jump instructions keep the program counter
within the application space.

To provide persistent data between these short-lived invocations a
key-value store is available. An application can read and write values to
both a global and a per-script local storage. Counters or aggregate
sensor values can be stored or retrieval in a subsequent application
execution.

TinyGo

ust

C/C++

VM andbox

oT perating ystem

 Facilities

andboxed
execution

ePF
ytecodeVM

 acilities
bindings

Figure 5.6: rPF application code
development and execution worklow.

5 . 3 EXPER IMENTAL EVALUAT ION

Themeasurements are carried out on popular, commercial off-the-shel
oT hardware: the ordic nF52840 evelopment Kit. This board
provides a typical Arm Cortex-M4-based microcontroller with 256 Ki
AM, 1Mi Flash, and a 2.4 GHz radio transceiver compatible both
with EEE 802.15.4, and luetooth ow-Energy. This hardware is
also available or reproducibility on open access test beds such as
oT-ab [17].

n this platorm, two types o benchmarks are perormed:

1. Measurements o the embedded computing perormance pro-
vided the VM, to get an idea o basic VM perormance.

2. enchmarks o the oT networking capabilities as provided rom
within the VM.

As second VM to compare against, a Wasm-based virtual machine
implementation, WAM3 is used. Wasm is used as it is recently
developed and ported to microcontrollers and is currently popular or
development as described in subsection 2.7.2.

5.3.4 HAPTER 5: R:  INY OFTWARE-ONLY IRTUAL ACHINE FOR O 73

5 . 3 . 1 COMPUT ING BENCHMARK SETUP

First, the Fletcher32 checksum algorithm [70] is used as basic peror-
mance benchmark. The Fletcher32 checksum algorithm requires a mix
o mathematical operations memory reads and branches, containing a
loop over input data. enchmark results consist o the impact o the
VM on the operating system in the additional memory required to
include it. For the VMs themselves, the execution speed and the size o
compiled applications loaded into the VM is measured.

5 . 3 . 2 NETWORKED BENCHMARK SETUP

ext, a setup involving a simple oT networked application as case
study is constructed. The VM hosts high-level logic, and this loaded
application is updatable over the network. The unctionality mimics an
application used in prior work [28], using small Javacript run-time
containers hosting application code on top o T. The hosted logic
has access to both the high-level sensor interace (called A) and the
CoAP stack o T. The VM execution is triggered by a CoAP request
and the operating system expects a ormatted CoAP response payload
or an error code rom the application loaded in the VM. The goal is
to load an application into the VM that, when triggered by a CoAP
request, reads a sensor value and constructs a ull CoAP payload as
response to the requester.

5 . 3 . 3 V IRTUAL MACH INE MEMORY
REQU IREMENT

sing our experimental setup, an initial set omeasurements comparing
rPF andWAM3 are carried out. With each prototype, the perormance
o VM logic when it hosts the same Fletcher32 checksum is measured.
While this example is speciic and artiicial, it is a good guinea pig to
get an idea o what to expect in general. The Fletcher32 checksum
algorithm requires a mix o mathematical operations memory reads
and branches, containing a loop over input data.

First and oremost as visible in Table 5.3, observe that the Flash
memory ootprint o the interpreter WAM3 is 15 times bigger than the
rPF interpreter. To get a perspective: relatively to the whole irmware
image (assuming simple business logic and a CoAP/P/6oWPA
network stack) adding an rPF VM represents negligible Flash memory
overhead (less than 10% increase), whereas adding a Wasm VMmore
than doubles the size o the irmware image.

M size AM size

WAM3 nterpreter 64 Ki 85 Ki
rPF nterpreter 4 364  660 
Host  Firmware (without VM) 52 760  14 856  Table 5.3: Memory requirements or

WAM3 and rPF interpreters.

5.3.5 HAPTER 5: R:  INY OFTWARE-ONLY IRTUAL ACHINE FOR O 74

code size time

ative C 74  27 µs
WAM3 322  980 µs
rPF 456  1 923 µs

Table 5.4: ize and perormance o
different targets or the Fletcher32
algorithm.

5 . 3 . 4 APPL ICAT ION S IZE COMPAR ISON

To compare the application sizes and thus the data that needs to be
transerred over the network or an update, the size o a small native
sofware module is measured. This is compared against the payload
data size transerred over the network when the hosted VM logic is
updated. With the results as in Table 5.4, it is visible that Wasm script
size seem somewhat smaller than rPF script size (approximately 30%
less in this case). The native C compilation shows the size o the code
i the library is compiled into the device irmware itsel and is not
network updatable without extra measures.

ext, the penalty in terms o execution time or VM logic is compared.
The perormance o Fletcher32 computation on a sample input string
o 361 , with each VM is compared. Themeasurements show that
execution is longer with the rPF VM, than with the Wasm VM (2 ×
longer). oth VMs perorm signiicantly slower than native execution,
with WAM3 approximately 35 times slower and rPF around 70 times
slower. However, in terms o instructions, rPF still enables 1.3M
instructions per seconds — a air perormance or a low-power oT
device which generally is not required to process ultra-high data
throughput.

ased on these preliminary measurements, it can be concluded
that rPF seems to offer acceptable perormance in general, and in
particular a very substantial advantage in terms o Flashmemory
ootprint compared to Wasm. Hence, a VM approach based on rPF
seemed promising, and the prototype is leshed out urther, to perorm
additional experiments with oT use-cases involving a CoAP network
stack.

5 . 3 . 5 RBPF WITH LOG IC INVOLV ING IOT
NETWORK ING

A use-case described in prior work [28] is reproduced, whereby high-
level logic involving CoAP networking is executed by the VM. More
precisely, the perormance the hosted code shown in isting 5.1 is
evaluated. The application requests a measurement value rom the
irst sensor and stores the value in a CoAP response. The unctions
called here are provided by the host operating system and exposed to
the VM. mplemented are the CoAP bindings as well as the bindings to
the high-level sensor (A) interace as depicted in Figure 5.1.

1 int coap_resp(bpf_coap_ctx_t *gcoap)
2 {
3 /* Find first sensor */
4 bpf_saul_reg_t *sens = bpf_saul_reg_find_nth(1);
5 phydat_t m; /* measurement value */
6

7 if (!sens ||
8 (bpf_saul_reg_read(sens, &m) < 0)) {
9 return ERROR_COAP_INTERNAL_SERVER;

10 }
11

12 /* Format the CoAP Packet */

5.4.1 HAPTER 5: R:  INY OFTWARE-ONLY IRTUAL ACHINE FOR O 75

13 bpf_gcoap_resp_init(gcoap, COAP_CODE_CONTENT);
14 bpf_coap_add_format(gcoap, 0);
15 ssize_t pdu_len = bpf_coap_opt_finish(gcoap,
16 COAP_OPT_FINISH_PAYLOAD);
17

18 /* Add the sensor as payload */
19 uint8_t *payload = bpf_coap_get_pdu(gcoap);
20 pdu_len += bpf_fmt_s16_dfp(payload, m.val[0],
21 m.scale);
22 return pdu_len;
23 }

Listing 5.1: Example networked sensor read application

5 . 3 . 6 APPL ICAT ION FLASH REQU IREMENT

When compiled, the size o the bytecode is 296 . The overhead o the
ull script execution, including the execution o the unction calls, is
94 µs. The additional overhead caused by the VM is negligible, when
compared to network latencies o several milliseconds.

The size o the ull irmware image is 69 Ki, including the rPF
interpreter. While the Flash memory required or the core rPF
interpreter is identical to the previous example (see Table 5.3), there is
however an 80  increase in Flash size due to the additional bindings to
the CoAP and sensor interaces. The AM requirements are increased
by 16  or an additional memory access region, used to allow access
to the CoAP packet.

5 . 3 .7 RUNT IME MEMORY REQU IREMENT

Here, as an additional point o comparison, can reer to similar logic
hosted in a small embedded Javacript run-time container with T
bindings, studied andmeasured in [28] on similar hardware (a Arm
Cortex-Mmicrocontroller). These measurements show that similar
logic requires 156 Ki or the Javacript engine, on top o the 59 Ki
used by T, and the hosted code (script) size which was around
1 Ki. ote urthermore that these Javacript containers did not
speciic memory isolation guarantees, as does rPF. t can thus be
concluded that rPF offers much better prospects than embedded
Javacript run-time containers too, in terms o memory requirements,
hosted logic size and network traffic overhead required to transmit VM
updates.

5 . 4 D ISCUSS ION

5 . 4 . 1 INHERENT L IM ITAT IONS WITH A VM

y construction, a VM causes execution overhead by interpreting
instructions. n turn this increases power consumption with logic
executed within the VM instead o native execution. Measuring the ull
impact o the VM on power consumption is a complex task. However,
this impact o increased power consumption is mitigated by two actors.
n one hand, depending on the characteristics o the logic executed in

5.4.4 HAPTER 5: R:  INY OFTWARE-ONLY IRTUAL ACHINE FOR O 76

the VM, this overheadmay be negligible. For instance, in this setup,
The VM is geared towards hosting simple scripts implementing short
decision steps rather than lengthy bulk data processing. n such cases,
the additional power consumed is not substantial when compared
with native execution. n the other hand, smaller script size decreases
drastically the energy needed otherwise to transer sofware updates,
instead o a ull irmware update, only the VM application has to be
updated.

5 . 4 . 2 DECREAS ING WASM RAM USAGE

ne limitation that was hit with WebAssembly is the relatively large
AM requirements: 64 Ki memory pages increment is excessive in the
ield o low-power microcontrollers. For this reason, based on these
measurements, it cannot be concluded yet on how useul Wasm really
is or low-power oT. Also note that the WAM3 interpreter adds an
intermediate compile step increasing speed, which also increases the
AM usage by another 10 Ki. Excluding this step in an interpreter can
trade a reduction in execution speed perormance or reduced memory
consumption. An implementation more geared towards embedded
applications might be able to reduce the AM requirements. A next
step here could also be to try out other interpreters such as or instance
Wasm-micro-runtime [52] and WAuino [81].

5 . 4 . 3 IMPROV ING RBPF EXECUT ION T IME
OVERHEAD

 execution time overhead really becomes an issue, then going back to
design a VM rom scratch, not restricted to a sofware-only solutions,
and use hardware MP or even an MM as base or memory protection.
A more advanced step is to translate the executed instructions ahead-
o-time into native instruction on the embedded device. Adding such
an intermediate transpilation technique to rPF (similar to what is
used by WAM3) and translate the raw ePF instructions to a ormat
more suitable or direct consumption on the system can signiicantly
reduce the execution time overhead. Either o these enhancements
however will increase the memory requirements on the host by the
added complexity.

5 . 4 . 4 DECREAS ING RBPF SCR IPT S IZE
OVERHEAD

The rPF VM implementation is designed as a secure sandbox or
running untrusted code on small embedded devices while adhering to
the already deined ePF A. t can be seen rom the application
script sizes that the current implementation are relative big compared
to applications compiled to WebAssembly bytecode. As the ePF
instructions are ixed in size and can contain a lot o unused bit ields
depending on the exact instruction, compressing them with well
known algorithms can reduce this downside. nitial measurements
show that Heatshrink [27], an Z-based [159] compression library
suitable or small embedded systems, can reduce the application size

5.5 HAPTER 5: R:  INY OFTWARE-ONLY IRTUAL ACHINE FOR O 77

by 60% depending on the application surpassing similar WebAssembly
applications.

5 . 4 . 5 EXTEND ING RBPF SANDBOX ING
GUARANTEES

The current use case o rPF lies in short term execution o business
logic and debug applications. However the current VM design does
not limit the actual execution time o the application, a virtualised
application can keep the system busy without limitations, possibly
draining the battery o the oT device. A potential next step could be
to limit the CP time a single invocation o the virtual machine can
occupy, urther limiting the potential harm untrusted code can inlict
on the device.

5 . 5 CONCLUS ION

n this chapter,  present the design o a minimal VM, implemented
and studied experimentally against a second VM implementation,
both targeting low-power, microcontroller-based oT devices. rPF
is a register-based VM hosed in T, and an interpreter based on
inux’s extended erkeley Packet Filters.  compare the perormance,
experimentally on commercial oT hardware, to an approach hosting
high-level logic in an embedded WebAssembly virtual machine. With
the benchmarks  show that, compared to WebAssembly and to prior
work on small run-time containers or interpreted logic, hosting rPF
VMs requires an overhead o ≈10% o lash usage or a typical oT
application. When compared to the ≈200% extra lash usage required
by Wasm implementations, rPF is muchmore attractive.

As presented here, rPF can be used to isolate small applications
inside the VM. t is a promising approach to host and isolate small
sofwaremodules, with acceptable execution time overhead and
without any reliance on speciic hardware. t shows minimal memory
overhead o ≈10% or a typical oT application.

The uture direction or rPF is to use it as core VM or a rich multi-
tenant environment around the sandbox. The minimal ootprint o
rPF with a trusted environment must be extended to an environment
in which different stake holders can adjust the unctionality o a
pre-programmed device in a reliable manner without having to update
the whole irmware.

78

CHAPTER 6

SANDBOXED FUNCTION EXECUTION
FOR DEVOPS-STYLE
RECONFIGURATION OF
CONSTRAINED DEVICES

The capability to run applications inside a VM and virtualise these
applications can be leveraged urther. The applications can be bundled
into small sofware components and isolated rom the operating
system. The operating system can be enhanced to offer rich acilities
to the applications inside the VM. Extrapolating this, the result is a
Functions-as-a-ervice-like environment speciically geared towards
microcontrollers.

uch a Faa-like environment provides an environment where small
event-triggered unctions can be run, providing the device operator
with debug or business logic on the device. This logic can be update as
a single module without having to update the ull irmware on the
device. Furthermore, because o the isolated nature o the VM, the
unction runs in a ault-tolerant environment. t is not possible or the
unction to directly inluence the memory o the operating system, only
through bindings exposed by the operating system.

n this chapter, rPF is urther extended into Femto-Container toprovide
a rich and secure Faa-like environment or microcontrollers. The
design o Femto-Container, together with benchmarks and comparison
against other environments is presented.

The work is published beore as “Femto-containers: lightweight
virtualization and ault isolation or small sofware unctions on
low-power oT microcontrollers” [2], presented in Middleware 2022 –
23rd ACM/FP nternational Conerence Middleware.

6 . 1 THREAT MODEL

When a client deploys unctions on a device operational in the ield, the
embedded environment has to ensure these unctions are sandboxed.
n this threatmodel, bothmalicious tenantswhich can deploymalicious

6.1.3 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 79

code andmalicious clientswhich canmaliciously interactwith deployed
code are considered.

6 . 1 . 1 MAL IC IOUS TENANT

The malicious tenant seeks to gain elevated permissions on the device
it has already a set o permissions on. This tenant is already allowed to
run code in the sandboxed environment, and the tenant might want to
break ree rom the sandbox to either the host system or a different
sandbox it does not have permissions or. While a tenant has to work
within the permissions granted by the host service, it can make ree
use o the granted resources.

6 . 1 . 2 MAL IC IOUS CL IENT

The malicious client does not have any permissions or running
sandboxed code on the device. The only access the malicious client
has is access to networked endpoints exposed by the device, e.g.
CoAP endpoints exposed by existing sandboxed environments. The
malicious client seeks to gain any permission on the device to inluence
it or gain access to conidential data on the device. Themalicious
client could make use o an already vulnerable tenant unction.

6 . 1 . 3 ATTACK VECTORS

A number o attack vectors are considered to be in scope or the
sandbox used in Femto-Container in this work:

• Install and update time attacks: These attacks ocus onmodiying
the application during the transport to the sandbox environ-
ment. This includes man-in-the-middle modiications to the
applications.

• Privilege escalation to a different sandbox: This class o attacks
ocus on escaping the sandbox o the application to a different
sandbox. The new sandbox could have different permissions.

• Privilege escalation to the operating system: This attack class
attempts to escape the sandboxed environment altogether to
the operating system.

• Resource exhaustion attacks: The constrained devices considered
here have very limited resources, both computational power and
battery energy are limited. A denial o service vector can be to
exhaust these resources.

Another attack vector that can be considered is resource exhaustion o
resources on the host system itsel. These can be attacked rom a
sandbox environment itsel or via a different surace. While these
attacks can cause harm to the system, or example to cause excessive
battery drain, the responsibility to protect against these attacks is
with the operating system and not or the sandbox environment, and
thereor out o scope o this work.

6.2.3 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 80

To the best o my knowledge, this work provides the irst ormally
veriied middleware based on ePF virtualisation able to host multiple
tiny runtime containers on a wide variety o heterogeneous low-power
microcontrollers.

6 . 2 EMBEDDED RUNT IME
ARCH ITECTURE DES IGN

n this section, Femto-Containers is introduced, a new embedded
runtime architecture tailored or constrained oT devices, as described
in the ollowing. imilarly to a Faa runtime, Femto-Containers allow
or the deployment and execution o small logic modules. These
modules, or unctions, are hosted on top o a middleware offering
isolation and abstraction with respect to the underlying  and
hardware. y combining isolation and hardware/ abstraction, the
crucial properties o Faa runtimes are retained: codemobility and
security. ifferently rom typical Faa runtimes, however, Femto-
Containers must be able to interact with speciic hardware (such as
sensor/actuators), and must drastically reduce the scope and the cost
o virtualisation to operate within the constraints oT hardware. The
Femto-Container architecture thereore relies on ultra-light weight
virtualisation, as well as on a set o assumptions and eatures regarding
an underlying T, deined below.

6 . 2 . 1 USE OF AN RTOS WITH
MULT I -THREAD ING

t is assumed that the T supports real-time multi-threading with a
scheduler. Each Femto-Container runs in a separate thread. Well-
known operating systems in this space can provide or that, such
as T [30] or FreeT [20] and others [83]. These can run on
the bulk o commodity microcontroller hardware available. ote
that T acilities or scheduling enable simple controlling o how
Femto-Containers interere with other tasks in the embedded system.

6 . 2 . 2 NO ASSUMPT IONS ON
MICROCONTROLLER HARDWARE

To retain generality, the aim is purely sofware-based isolation, which
can also run on the least capable microcontrollers, without any
assumptions on hardware architecture enhancements or security
peripherals.  present, hardware-based isolation eatures could
nevertheless be used to add layers o protection in-depth. For instance
TrustZone sofware module isolation relies on enhanced AM Cortex-M
microcontroller architectures [135].

6 . 2 . 3 USE OF ULTRA-L IGHTWE IGHT
V IRTUAL ISAT ION

The virtual machine (VM) provides hardware agnosticism, and should
thereore not rely on any speciic hardware eatures or peripherals.

6.2.7 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 81

This allows or running identical application code on heterogeneous
hardware platorms. The VMmust have a lowmemory ootprint, both
in Flash and in AM, per instantiated VM application. This allows to
run multiple VMs in parallel on the device. ote that, as the aim is to
virtualise less unctionalities, the VM can in act implement a reduced
virtual hardware eature set. For instance, virtualised peripherals such
as an interrupt controller are not required, and remove the possibility
o virtualising a ull .

6 . 2 . 4 USE OF S IMPLE CONTA INER IZAT ION

A slim environment around the VM exposes T acilities to the VM.
The container sandboxing a VM allows this VM to be independent o
the underlying operating system, and provide the acilities as a generic
interace to the VM. imple contracts between container and T can
be used to deine and limit the privileges o a container regarding its
access to  acilities. ote that such limitations must be enorced at
run-time to saely allow third party module reprogramming.

6 . 2 . 5 I SOLAT ION & SANDBOX ING THROUGH
V IRTUAL ISAT ION

The  and Femto-Containers must be mutually protected rom
malicious code. This implies in particular that code running in the VM
must not be able to access memory regions outside o what is allowed.
Here again, simple contracts can be used to deine and limit memory
and peripheral access o the code running in the Femto-Container.

6 . 2 . 6 EVENT-BASED LAUNCHPAD
EXECUT ION MODEL

Femto-containers are executed on-demand, when an event in the
T context calls or it. Femto-container applications are rather
short-lived and have a inite execution constraint. This execution
model its well with the characteristics o most low-power oT sofware.
To simpliy containerization and enorce security-by-design, the design
mandates that Femto-Containers can only be attached and launch
rom predetermined launch pads, which are sprinkled throughout
the T irmware. Where applicable however, the result rom the
Femto-Container execution can modiy the control low in the irmware
as deined in the launch pad.

6 . 2 .7 LOW-POWER SECURE RUNT IME
UPDATE PR IM IT IVES

aunching a new Femto-Container or modiying an existing Femto-
Container can be done without modiying the T irmware. However,
updating the hooks themselves requires a irmware update. n our
implementation, both types o updates use CoAP network transer
and sofware update metadata deined by T [7] (C, CE) to
secure updates end-to-end over network paths including low-power
wireless segments. everaging T or these update payloads provides

6.3.1 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 82

untime M size AM size

WAM3 64 Ki 85 Ki
ePF 4.4 Ki 0.6 Ki
Tjs 121 Ki 18 Ki
µPython 101 Ki 8.2 Ki

are Host


52.5 Ki 16.3 Ki

Table 6.1: Memory requirements or
Femto-Container runtimes.

authentication, integrity checks and roll-back options. pdating a
Femto-Container application attached to a hook is done via a T
maniest. The exact hook to attach the new Femto-Container to is done
by speciying the hook as niversally nique dentiier () as
storage location in the T maniest. A rapid develop-and-deploy
cycle only requires a new Tmaniest with the storage location
speciied every update. ending this maniest to the device triggers the
update o the hook afer the new Femto-Container application is
downloaded to the device and stored in the AM.

6 . 3 ULTRA-L IGHTWE IGHT VM
MICRO-BENCHMARK

n this section, the perormance o an initial proo o concept using
T [30] to host Femto-Container runtimes is compared. ifferent
ultra-lightweight virtualisation techniques are compared: Python
(MicroPython runtime), WebAssembly (WAM runtime), ePF (rPF
runtime) and Javacript (Tjs runtime).

Experiments with Femto-Containers are run using each virtualisa-
tion candidate on popular, commercial, off-the-shel oT hardware,
representative o the landscape o modern 32-bit microcontroller
architecture that are available: Arm Cortex-M, EP32, and C-V.

n these benchmarks reported on below, each Femto-Container is
minimally implemented, and loadedwith a VMhosting logic perorming
a Fletcher32 checksum on a 360  input string. The assumption is
that this computing load roughly mimics intensive sensor data (pre-)
processing on-board.

ur benchmarks results are shown in Table 6.1 and Table 6.2.

6 . 3 . 1 CONS IDER ING S IZE

While the size o applications are roughly comparable across virtualisa-
tion techniques (see Table 6.2) the memory required on the oT device
differs wildly. n particular, techniques based on script interpreters
(Tjs and MicroPython) require the biggest dedicated Mmemory
budget, above 100 Ki.

6.3.3 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 83

untime code size startup time run time

ative C 74  – 27 µs
WAM3 322  17 096 µs 980 µs
rPF 456  1 µs 2 133 µs
Tjs 593  5 589 µs 14 726 µs
MicroPython 497  21 907 µs 16 325 µs

Table 6.2: ize and perormance o
Fletcher32 logic hosted in different
Femto-Container runtimes.

untime
66%

etwork
13%

Kernel
11%

TA
5%

Crypto
5%

Figure 6.1: Flash memory distribution
o T with MicroPython Femto-
Container, 154 Ki total.

etwork
35%

Kernel
30%

TA
14%

Crypto
13%

runtime
8%

Figure 6.2: Flash memory distribution
o T with rPF Femto-Container,
57 Ki total.

For comparison, the biggest M budget measured requires 27 times
more memory than the smallest budget. imilarly, AM requirements
vary a lot. ote that it was not possible to determine with absolute
precision the lower bound or script interpreters techniques, due
to some lexibility given at compile time to set heap size in AM.
evertheless, our experiments show that the biggest AM budget
requires 140 times more AM than the smallest budget. As noted in
chapter 5 the minimum required page size o 64 Ki to comply with the
WebAssembly speciication explains why Wasm perorms poorly in
terms o AM. ne can envision enhancements where this requirement
is relaxed. However the AM budget would still be well above an order
o magnitudemore than the lowest AM budget as measured with
rPF.

ast but not least, to give someperspective by comparisonwith a typical
memory budget or the whole sofware embedded on the oT device.
As a reminder, in the class o devices considered, a microcontroller
memory capacity o 64k in AM and 256k in Flash (M) is not
uncommon. A typical  ootprint or this type o device is shown in the
last row o Table 6.1. For such targets, according to our measurements,
adding a VM can either incur a tremendous increase o 200%more
M with MicroPython, or a negligible impact with 8%more M with
rPF as visualized in Figure 6.1 and Figure 6.2.

6 . 3 . 2 CONS IDER ING SPEED

To no surprise, beyond size overhead, virtualisation also has a cost in
terms o execution speed. ut here again, perormance varies wildly
depending on the virtualisation technique. n one hand, solutions
such as MicroPython and Tjs directly interpret the code snippet and
execute it. n the other hand, solutions such as rPF andWAM3
require a compilation step in between to convert rom human readable
code to machine readable.

ur measurements show that script interpreters incur an enormous
penalty in execution speed. Compared to native code execution, script
interpreters are ≈600 times slower. Compared to the same base (native
execution) Wasm is only 37 times slower, and rPF 77 times slower.

ne last aspect to consider is the startup time dedicated to preliminary
pre-processing when loading new VM logic, beore it can be executed
(including steps such as code parsing and intermediate translation, var-
ious pre-light checks etc.). epending on the virtualisation technique,
this startup time varies almost 1000 old — rom a ewmicroseconds
compared to a ewmilliseconds.

6.4.1 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 84

6 . 3 . 3 CONS IDER ING VM ARCH ITECTURE &
SECUR ITY

Wasm, MicroPython and Tjs each require some orm o heap on
which to allocate application variables. n the other hand, rPF
does not require a heap. With a view to accommodating several VMs
concurrently, a heap-based architecture presents some potential
advantages in terms omemory (pooling) efficiency, however it also has
some potential drawbacks in terms o security with mutual isolation o
the VMs’ memory.

Furthermore, security guarantees call or a ormally veriied implemen-
tation o the hosting engine. A typical approximation is: less ines o
Code (oC) means much less effort to produce a veriied implemen-
tation. For instance, the rPF implementation is ≈1.5 koC, while
the WAM3 implementation is ≈10 koC. The other implementations
considered in our pre-selection, Tjs and MicroPython, encompass
signiicantly more oC.

6 . 3 . 4 CHO ICE OF V IRTUAL ISAT ION

ur benchmarks indicate that in terms o memory overhead, startup
time and oC, Femto-Containers using rPF virtualisation is the most
attractive, by ar. ote that execution timewith Femto-Containers using
WebAssembly is 2x aster than Femto-Containers using rPF. However,
it is expected that a 2x actor in execution time will have no signiicant
impact in practice, or the use cases targeted: small lightweight
workloads. ince the priority is on memory ootprint, the aim is≈10 percent memory overhead or unctionality containerization,
rPF is chosen to lesh out the concept urther.

6 . 4 FEMTO-CONTA INER RUNT IME
IMPLEMENTAT ION

The Femto-Container VM design is based on rPF which is designed
rom the ePF instruction set architecture. The instruction set itsel is
minimal and optimized or ast parsing with compact code. As proo
o concept, the Femto-Container architecture is implemented with
containers hosted in the operating system T and virtualisation
using an instruction set compatible with the ePF instruction set.
This implementation is open source (published in [14]). Themain
characteristics are shown in detail below.

6 . 4 . 1 USE OF R IOT MULT I -THREAD ING

Each Femto-Container application instance running on the operating
system is scheduled as a regular thread in T. The native  thread
schedulingmechanism can thus simply execute concurrently and share
resources amongst multiple Femto-Containers and other tasks, spread
over different threads. An overview o how Femto-Containers integrates
in the operating system is shown in Figure 6.3. A Femto-Container
instance requires minimal AM:a small stack and the register set,

6.4.2.0 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 85

but no heap. The host T bears thus a very small overhead per
Femto-Container instance.

The hardware and peripherals available on the device are not accessible
by the Femto-Container instances. All interaction with hardware
peripherals passes through the host T via the system call interace.
As the Femto-Container VMdoes not virtualise its own set o peripherals,
no interrupts or pseudo-hardware is available to the Femto-Container
application. This also removes the option to interrupt the application
low inside a Femto-Container.

KEY-VALUE STORE .

n lieu o a ile system, applications hosted in Femto-Containers
can load and store simple values, by a numerical key reerence, in a
key-value store. This provides a mechanism or persistent storage,
between application invocations. nteraction with this key-value store
is implemented via a set o system calls, keeping it independent o the
instruction set. y deault, two key-value stores are provided by the
operating system. The irst key-value store is local to the application,
or values that are private to the VM accommodated in the container.
The second key-value store is global, and can be accessed by all
applications, used to communicate values between applications. An
optional third intermediate-level o key-value store is possible to
acilitate sharing data across a set o VMs rom the same tenant, while
isolating this set o VMs rom other tenants’ VMs.

6 . 4 . 2 ULTRA-L IGHTWE IGHT
V IRTUAL ISAT ION US ING EBPF
INSTRUCT ION SET

Application code is virtualised using Femto-Containers, our enhance-
ment o the rPF VM implementation. rPF is again based on the inux
ePF. The architectures o these VM are similar enough that they all
use the VM compiler with the ePF target or compilation.

REG ISTER-BASED VM

The VM operates on eleven registers o 64 bits wide. The last register
(r10) is a read-only pointer to the beginning o a 512  stack provided
by the Femto-container hosting engine. nteraction with the stack
happens via load and store instructions. nstructions are divided into
an 8 bit opcode, two 4 bit registers: source and destination, an 16 bit
offset ield and a 32 bit immediate value. Position-independent code
is achieved by using the reerence in r10 and the offset ield in the
instructions.

JUMP TABLE & INTERPRETER

The interpreter parses instructions and executes them operating on the
registers and stack. The machine itsel is implemented as a computed
jump table, with the instruction opcodes as keys. uring execution, the
hosting engine iterates over the instruction opcodes in the application,

6.4.3.0 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 86

Hosting Engine

esult
usage

Femto-Container
(Ephemeral)

Virtual
Machine

tart
Container

Hook

 Flow

s indings

tore

T perating ystem

ypass
with
deault
result

Event

esult

Figure 6.3: Femto-Container T
integration.

and jumps directly to the instruction-speciic code. This design keeps
the interpreter itsel small and ast.

AHEAD-OF-T IME VS JUST- IN -T IME

ne approach to speed up embedded execution time is to perorm a
translation into device-native code. ne way to offload the device is to
use more Ahead-o-Time (AT) compilation and interpretation, and
less Just-in-Time (JT) processing on-device. However, using AT pre-
compiled code can both complicate run-time security checks on-board
the oT device, and reduce the portability o the code deployed on the
device. For these reasons, in this section, primarily JT is considered.

6 . 4 . 3 I SOLAT ION & SANDBOX ING

To control the capabilities o Femto-Containers, and to protect the 
rommemory access by malicious applications, a simple but effective
memory protection system is used. y deault each VM instance only
has access to its VM-speciic registers and its stack.

MEMORY ACCESS CHECKS AT RUNT IME

The allowlist can be conigured (attached in the hosting engine) to
explicitly allow a VM instance access to other memory regions. These
memory regions can have individual lags or allowing read/write

6.4.4 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 87

Abort

Continuenstruction

ead/Write
Access ist

nstruction
ecode

ther
nstruction

Memory
Access

Figure 6.4: nteraction between
memory instructions and the access
lists.

access. For example, a irewall-type trigger can grant read-only access
to the network packet, allowing the VM to inspect the packet, but not
to modiy it. As the memory instructions allow or calculated addresses
based on register values, memory accesses are checked at runtime
against the resulting address, as show in Figure 6.4. llegal access
aborts execution.

PRE-FL IGHT INSTRUCT ION CHECKS

A Femto-Container veriies the application beore it is executed or the
irst time. These checks includes checks on the instruction ields. For
example, as there are only 11 registers, but space in the instruction or
16 registers, the register ields must be checked or out-o-bounds
values. A special case here is register r10which is read-only, and thus
is not allowed in the destination ield o the instructions.

The jump instructions are also checked to ensure that the destination
o the jump is within the address space o the application code. As
calculated jump destinations are not supported in the instruction set,
the jump targets are known beore executions and are checked during
the pre-light checks. uring the execution o the application, the jump
destinations no longer have to be veriied and can be accepted as valid
destinations.

Finite execution is also enorced, by limiting both the total number
o instructions, and the number o branch instructions that
are allowed. n practice, this limits the total number o instructions
executed to:  × .
6 . 4 . 4 HOOKS & EVENT-BASED EXECUT ION

The Femto-container hosting engine instantiates and runs containers
as triggered by events within the T. uch events can be a net-
work packet reception, sensor reading input or an operating system
scheduling events or instance. usiness logic applications can be
implemented either by directly responding to sensor input or by
attaching to a timer-based hook to ire periodically.

imple hooks are pre-compiled into the T irmware, providing a
pre-determined set o pads romwhich Femto-Containers can be
attached and launched.

1 sched_ctx_t context = {

6.5.2 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 88

2 .previous = active_thread,
3 .next = next_thread,
4 };
5

6 int64_t result;
7

8 fc_hook_execute(BPF_HOOK_SCHED, &context,
9 sizeof(context), &result);
Listing 6.1: Example hook implementation.

An example o a hook integrated in the irmware is shown in isting 6.1.
The irmware has to set up the context structure or the Femto-
Containers afer which it can call the hosting engine to execute the
containers associated with the hook.

6 . 5 USE-CASE PROTOTYP ING WITH
FEMTO-CONTA INERS

n this section, the programming model exposed by Femto-Containers
is described. Furthermore Femto-Containers is used to prototype the
implementation o several use cases involving one ormore applications,
hosted concurrently on a microcontroller, matching targets identiied
initially. Where multiple unction are involved, these are hosted
concurrently on a single microcontroller.

6 . 5 . 1 PROGRAMMING MODEL

n the prototype implementation shown below, C is used to code logic
hosted in Femto-Containers. However, any other language compiled
with VM could be used instead such as C++, ust and TinyGo.

nherent limitations due to the ePF instruction set, combined with the
absence o virtualised hardware, restrict what logic can be deployed
in Femto-Containers currently. Femto-Containers are designed to
host logic that is rather script-like, short-lived, and not computation-
intensive. n the one hand, such characteristics increase security-
by-design. n the other hand they reduce lexibility. For instance,
asynchronous operation is not supported: there is no option to
interrupt the control low inside a Femto-Container rom outside the
VM. Another limitation is the ixed, small size o the stack (512 ytes)
dictated by the ePF speciication. More memory-consuming tasks
would need special handling to provide additional memory. Allowing
the application to request more stack rom the T, or example via
the contracts, could solve part o this issue. More computation- and
memory-intensive tasks could also make use o additional system calls
provided by the T, which could execute generic primitives at native
speed.

6 . 5 . 2 KERNEL DEBUG CODE EXAMPLE

The irst prototype consists in a single application, which intervenes
on a hot code path: it is invoked by the scheduler o the , to keep

6.5.3 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 89

an updated count o threads’ activations. The logic hosted in the
Femto-Container is shown in isting 6.2. A small C structure is passed
as context, which contains the previous running thread  and the next
running thread . The application maintains a value or every thread,
incrementing it every time the thread is scheduled. External code can
request these counters and provide debug eedback to the developer.

1 #include <stdint.h>
2 #include "bpf/bpfapi/helpers.h"
3

4 #define THREAD_START_KEY 0x0
5

6 typedef struct {
7 uint64_t previous; /* previous thread */
8 uint64_t next; /* next thread */
9 } sched_ctx_t;

10

11 int pid_log(sched_ctx_t *ctx)
12 {
13 /* Zero pid means no next thread */
14 if (ctx−>next != 0) {
15 uint32_t counter;
16 uint32_t thread_key = THREAD_START_KEY +
17 ctx−>next;
18 bpf_fetch_global(thread_key,
19 &counter);
20 counter++;
21 bpf_store_global(thread_key,
22 counter);
23 }
24 return 0;
25 }

Listing 6.2: Thread counter code.

6 . 5 . 3 NETWORKED SENSOR CODE
EXAMPLE

For the second prototype two Femto-Containers are added rom
another tenant to the setup o the irst prototype. nteraction between
these two additional containers is achieved via a separate key-value
store, as depicted in Figure 6.5. The logic hosted in the irst Femto-
Container, periodically triggered by the timer event, reads, processes
and stores a sensor value. The code or this logic is shown in isting 6.3.

1 #include <stdint.h>
2 #include <stdbool.h>
3 #include "bpf/bpfapi/helpers.h"
4

5 #define SHARED_KEY 0x50
6 #define AVERAGING_LEN 10
7 #define PERIOD_US (1000 * 1000)
8

9 static uint32_t _average(uint32_t *values)
10 {
11 uint64_t sum = 0;
12 for (size_t i = 0;
13 i < AVERAGING_LEN;

6.5.3 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 90

14 i++) {
15 sum += values[i];
16 }
17 return sum / AVERAGING_LEN;
18 }
19

20 int measurement(void *conf)
21 {
22 uint32_t last_wakeup = bpf_ztimer_now();
23 uint32_t counter = 0;
24 size_t pos = 0;
25 bool initial = true;
26

27 uint32_t values[AVERAGING_LEN];
28

29 while (1) {
30 /* Read sensor value from sensor */
31 bpf_saul_reg_t *sensor;
32 phydat_t measurement;
33

34 /* Periodic blocking sleep */
35 bpf_ztimer_periodic_wakeup(&last_wakeup,
36 PERIOD_US);
37

38 /* Find first sensor */
39 sensor = bpf_saul_reg_find_nth(1);
40

41 /* Abort if the sensor is
42 not available */
43 if (!sensor ||
44 (bpf_saul_reg_read(sensor,
45 &measurement) < 0)
46) {
47 continue;
48 }
49

50 uint32_t value = measurement.val[0];
51

52 if (initial) {
53 /* Fill array with the
54 initial measurement */
55 for (size_t i = 0;
56 i < AVERAGING_LEN;
57 i++) {
58 values[i] = value;
59 }
60 initial = false;
61 }
62 else {
63 values[pos] = value;
64 pos++;
65 if (pos >= AVERAGING_LEN) {
66 pos = 0;
67 }
68 }
69

70 uint32_t average =
71 _average(values);

6.5.3 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 91

72

73 bpf_store_global(SHARED_KEY,
74 average);
75 }
76

77 /* Unreacheable */
78 return 0;
79 }

Listing 6.3: Femto-Container ensor readout process.

The second container’s logic is triggered upon receiving a network
packet (CoAP request), and returns the stored sensor value back to the
requester. The code or this logic is shown in isting 6.4.

1 #include <stdint.h>
2 #include "bpf/bpfapi/helpers.h"
3

4 #define SHARED_KEY 0x50
5 #define COAP_OPT_FINISH_PAYLOAD (0x0001)
6

7 typedef struct {
8 uint32_t hdr_p; /* ptr to raw packet */
9 uint32_t token_p; /* ptr to token */

10 uint32_t payload_p; /* ptr to payload */
11 uint16_t payload_len; /* length of payload */
12 uint16_t options_len; /* length of options */
13 } bpf_coap_pkt_t;
14

15 int coap_resp(bpf_coap_ctx_t *gcoap)
16 {
17 bpf_coap_pkt_t *pkt = gcoap−>pkt;
18 /* Track executions */
19 uint32_t counter;
20 bpf_fetch_global(SHARED_KEY, &counter);
21

22 char stringified[20];
23 size_t str_len = bpf_fmt_u32_dec(stringified,
24 counter);
25

26 /* Format the packet with a 205 code */
27 bpf_gcoap_resp_init(gcoap, (2 << 5) | 5);
28 /* Add Text type response header */
29 bpf_coap_add_format(gcoap, 0);
30 ssize_t pdu_len = bpf_coap_opt_finish(gcoap,
31 COAP_OPT_FINISH_PAYLOAD);
32

33 uint8_t *payload =
34 (uint8_t*)(intptr_t)(pkt−>payload_p);
35

36 if (pkt−>payload_len >= str_len) {
37 bpf_memcpy(payload, stringified,
38 str_len);
39 return pdu_len + str_len;
40 }
41

42 return −1;
43 }

Listing 6.4: Femto-Container CoAP Endpoint.

6.6 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 92

T perating ystem

Thread Counter
Femto-Container 3

Tenant 

CoAP esponse
Formatter

Femto-Container 2

CoAP esponse
Formatter

Femto-Container 1

Tenant A

toreA

tore

Thread
witch

Kernel

CoAP
Hook
eply

Timer
Hook

CoAP
tack

witch
Event

CoAP
Event

Timer
Event

Hosting Engine
Figure 6.5: Event and value low
when hostingmultiple containers or
different tenants.

C non-proo pathproo pathCoq

Veriied C
mplementation
(nterpreter)

Veriied C
mplementation

(Veriier)

guarantee

Clight
Model

C-ready
mplementation

simulation
Proo Model

einement/
equivalence

C-ready
mplementation

Clight
model

simulation

properties isolationassumption

extract (∂x)
extract (clightgen)

extract (∂x)
extract (clightgen)

Pre-light
nstruction Checks Femto-Container

guarantee optimize

ormalize / optimize ormalize

M
anuallyvalidate
(Evaluation)

Figure 6.6: Certiied Femto-Container (CertFC) Formal veriication worklow.

n this toy example, the sensor value processing is a simple moving
average, but more complex post-processing is possible instead, such as
differential privacy or some ederated learning logic, or instance. This
example sketches both howmultiple tenants can be accommodated,
and how separating the concerns between different containers is
possible (between sensor value reading/processing on the one hand,
and on the other hand the communication between the device and a
remote requester).

6.6.2 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 93

6 . 6 FORMAL VER IF ICAT ION

The critical components o Femto-Containers in terms o cyber-security
are the rPF interpreter and the pre-light instruction checker. ince
the implementation is conveniently small (500 lines o C code or the
interpreter and the checker), a ormally veriied implementation o
these components could be produced. This runtime, called Certiied
Femto-Container (CertFC), which uses the ormally veriied interpreter
and checker.

6 . 6 . 1 TARGETED REQU IREMENTS
FORMAL IZAT ION .

The security guarantees provided Femto-Containers with are essen-
tially memory and ault isolation. More precisely, the aim was to
prove it impossible or CertFC to access a memory location out o its
application’s register memory or to execute an instruction leading to
an undeined behavior, and consequently heading the VM and/or its
host to crash. Providing these guarantees urther strengthens the
security needed with the threat model to prevent access to memory
outside o the sandbox, in turn preventing unprivileged access to the
operating system or other VM.

6 . 6 . 2 FORMAL VER IF ICAT ION APPROACH .

The Coq proo assistant was used to mechanically and exhaustively
veriy these requirements by employing themulti-step design worklow
depicted in Figure 6.6:

1. First, a proo model and a C-ready implementation that ormalize
and optimize the native, vanilla, C implementations o the rPF
veriier and VM in T was provided. Proo and C-ready models
are proved semantically equivalent in Coq.

2. The veriication o expected saety and isolation properties is
perormed by the Coq proo assistant on the VM’s proo model.
t relies on the ormalized isolation guarantees provided by:

(a) The CompCert C memory model [106].

(b) the pre-light runtime checks o the veriier.

(c) the deensive runtime checks o the VM itsel or numerical
and memory operations.

3. The veriied C implementation is automatically extracted rom
the C-ready Coq model using the ∂x tool [100]. ased on a set o
ormalized translation rule rom Coq to C, ∂x allows to craf a
both reviewable and optimized C code rom a unctional Coq
deinition.

4. To ensure that the extracted C code reines the proo model,
and hence satisies the saety and isolation properties, the
inal simulation proo proceeds in two steps. First, a CompCert
Clight model is extracted rom the generated C code, using the

6.8 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 94

Table 6.3: Code statistics o CertFC

oCs

Proo Model 2 445
C-ready mplementation 4 744
Properties 5 432
Equivalence 635
imulation 23 564
(Total) 36 820

VT-clightgen tool [23]. econd, proving that Clight model to
simulate the C-ready model using translation validation [136].

The pre-light checks o the veriier are directly ormalized by a C-ready
implementation in Coq because o its simplicity. y contrast, the
interpreter is irst ormalized by a proo model in Coq that deines the
ormal syntax and semantics o the rPF A. The Coq speciication
is then reined into an optimized (yet semantically equivalent) C-
ready implementation in Coq, or the purpose o extracting C code
using ∂x. This reinement/optimization principle allows to 1) prove
the native optimizations correct, 2) improve the perormance o
the extracted code and, 3) acilitate the extracted code review and
validation with system designers. Pre-light checks, subsection 6.4.3,
deine rudimentary guarantees or applications to run on the VM.
The ormalization o these guarantees also deines necessary pre-
conditions to the veriication o ault-isolation, i.e. the guarantee
verifier_inv o the veriier C-ready model is used as assumption
by the proo model o the interpreter. Combined with the registers
invariant register_inv and the memory invariant memory_inv,
it yields the proo o sofware-ault isolation o CertFC in the Coq
proo assistant, that is, the isolation o all transitions to a crash state
using runtime saety checks, hence the impossibility o an undeined
behavior. The Coq theorem inv_ensure_no_undef states that our
model satisies a sofware ault isolation property where st is a CertFC
state and fuel is used to enorce inite execution.

Table 6.3 provides statistics on the complete speciications and proos
o CertFC. The proo model o the interpreter consists o 2.4k lines
o Coq code. The C-ready implementationmodel o the veriier &
interpreter is approx. 4.7k long. The proo o the VMs properties (e.g.
isolation) exceeds 5.4k and the reinement/equivalence theorem is
completed by a 0.6k proo. The inal step includes 23.5k o translation
validation proos between the Coq speciication and the extracted
Clight model. The last part o Figure 6.6 is the manual validation
between the native C code and the veriied implementation,

6 .7 PERFORMANCE EVALUAT ION

n this section the perormance o Femto Containers is evaluated and
compared with rPF and CertFC runtimes. The comparison is done on
a number o low-power oT hardware platorms: Cortex-M4, C-V and
EP32 basedmicrocontrollers.

6 . 8 HOST ING ENG INE ANALYS IS

The Femto-Container implementation is benchmarked on a number o
aspects. First, the ootprint o the hosting engine on the embedded
device is compared. This shows the impact o adding Femto-Containers
to the applications. econd, the execution time o a number o
individual instructions is compared. This shows the difference in
computational overhead between the different implementations.

6.9 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 95

Co
rte
x-M
4

E
P3
2


C-V

05001,0001,5002,0002,5003,0003,5004,0004,500
y
te
s

rPF
Femto-Containers

CertFC

Figure 6.7: Flash requirement or
the different implementations and
platorms

M size AM size

Femto- 2 992  624 
Containers
rPF 3 032  620 
CertFC 1 378  672 

Table 6.4: Memory ootprint o a
Femto-Container hosting minimal logic
on Arm Cortex-M4.

To compare the impact o adding the Femto-Containers to an existing
irmware, the memory ootprint o the different implementations is
measured and compared. n general, each Femto-Container needs
memory to:

• tore the application bytecode.

• Handle the VM state and stack.

The impact on the required lash on the irmware is shown in Figure 6.7
and Table 6.4. n terms o required AM or execution, both rPF and
Femto-Containers show comparable lash and AMmemory usage. n
terms o Flashmemory size, our measurements show that CertFC
actually reduces the ootprint by 55% on Cortex-M4. The CertFC
implementation requires slightly more memory, an increase o around
50  per instance. This is caused by CertFC storing extra state o the VM
in the context memory structure and not on the thread stack.

The different implementations o Femto-Containers are compared
in Figure 6.8 against a set o ePF instructions, showing that the
rPF extensions incur minimal overhead on the VM and provide
similar throughputs. ow, the perormance o the ormally veriied
CertFC is lagging behind the other implementations, revealing the
trade off between the ormally veriied code and a natively optimized
implementation.

6 . 9 EXPER IMENTS WITH A S INGLE
CONTA INER

n this section, the execution times o a number o Femto-Container ap-
plications are shown. This shows the applicability o Femto-Containers
in the different scenarios. The execution times are shown in Figure 6.11.

The irst example executes a Fletcher32 checksum over a data string
o 360 . t shows the time it takes or relative heavy processing
within the Femto-Containers VM. epending on the platorm and the
speed o the microcontroller it takes between 1.3ms and 2.2ms. For

6.9.1 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 96

A
 n
ega
te

A
 A
dd

A
 A
dd
im
m

A
m
ult
ipl
y im
m

A
 r
igh
t sh
if
im
m

A
 d
ivid
e im
m

ME
M l
oa
d d
ou
ble

ME
M s
tor
e d
ou
ble
im
m

ME
M s
tor
e d
ou
ble

ra
nc
h a
lwa
ys

ra
nc
h e
qu
al (
jum
p)

ra
nc
h e
qu
al (
con
tin
ue
)00.250.50.7511.251.51.7522.252.52.75

µs
pe
ri
ns
tru
ct
io
n

rPF
Femto-Containers

CertFC

Figure 6.8: Time per instructions on the Cortex-M4 platorm

Co
rte
x-
M
4

E
P3
2


C
-V

05001,0001,5002,000
µs
pe
re
xe
cu
tio
n

Figure 6.9: Fletcher32 checksumming
algorithm application.

Co
rte
x-
M
4

E
P3
2


C
-V

05
10152025

µs
pe
re
xe
cu
tio
n

Figure 6.10: Thread log example
application.

Femto-Containers the duration o this application is long.

The second example shown is the thread counter example previously
shown in isting 6.2. n normal operation it is inserted in the thread
switch hook provided by the operating system, a hot path in the . As
shown in the igure, adding this would increase the duration o a
thread switch in the operating system by 10 µs to 27 µs. The impact on
the operating system would not be negligible, but also not problematic
during normal operation.

The last example shows the duration o the second stage o the
networked sensor code example rom isting 6.4. t depends heavily on
system calls or ormatting o the CoAP response, but still contains
some processing inside the VM. t can be considered a representative
example or business logic on the device. This example takes between
23 µs and 72 µs. For business logic programmed outside o the hot
code path o the operating system itsel, the overhead caused here by
the VM is rather acceptable and does not impact the perormance o
the overall system.

6 . 9 . 1 FEMTO-CONTA INERS WITH MULT IPLE
INSTANCES

Femto-Containers are optimized to run multiple containers on a single
system in parallel. All state o an instance is kept local to the instance.
Each new instance added takes 624  o AM to run, including the VM
stack. The other requirement is that the microcontroller must have a
large enough storage or the all the application images.

6.10 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 97

Co
rte
x-
M
4

E
P3
2


C
-V

010203040506070

µs
pe
re
xe
cu
tio
n

Figure 6.11: CoAP response ormatter
application.

ifferent instances do not have access to each others resources
by deault. They are ully isolated and do not have access to each
others memory, isolated by the memory protection mechanism. ne
way provided to communicate between the instances is the shared
key-value store.

Multiple containers can be attached to the same launchpad hook
inside the operating system. t depends on the hook how the return
value rom each instance is processed urther. This allows or multiple
tenants attaching to the same hook and process similar events.

The results are shown in Table 6.5. For example, the CoAP handler
container, as described by Figure 6.5, requires additional read/write
permissions to two memory regions to handle the CoAP packet, which
increases the AM overhead by 16  per region.

ext, the memory required to concurrently host multiple containers
rommultiple tenants on the same microcontroller is measured, using
the examples described in section 6.5. As shown previously in Table 6.4,
the minimal deault memory ootprint used by a Femto-Container
amounts to 624 , which is or storing the VM stack, housekeeping
memory structures and inormation about memory regions.

Furthermore, the key-value stores are also in AM. n this case the total
AM used by the key value stores and housekeeping or different
tenants was 340 . Hence, the required AMmemory measured so as
to run the example with 3 containers and 2 tenants is 3.2 Ki. eyond
these examples, when increasing the number o containers hosting
larger applications (e.g. ≈2 000 ), an Arm Cortex-M4 microcontroller
with 256 Ki AM, the density o containers achievable would be o≈100 instances, next to running the .

ytecode Container AM Total AM

Thread Counter 104  664  768 
ensor eader 496  664  1 160 
CoAP Handler 264  696  960 

Table 6.5: AM required to host
multiple concurrent Femto-Containers
applications.

T Hook Application Hook verhead

Cortex-M4 427 645 3499 218
EP32 1607 1773 2325 166
C-V 573 784 1508 211 Table 6.6: Thread switch perormance

in clock ticks

6 . 1 0 OVERHEAD ADDED BY HOOKS

ne key question is how perormance is affected by pre-provisioning
launchpads (hooks) in the T irmware. n Table 6.7 the overhead
caused by adding a hook to the T worklow is measured. This
overhead amounts to≈100 clock ticks on all the hardware tested.
Compared to the number o cycles needed or an average task in the
operating system, this impact is low. Furthermore, this overhead
is less than 10 percent o the number o cycles needed to execute

6.11.4 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 98

Empty
Hook

Hook with
Application

Cortex-M4 109 1750
EP32 83 1163
C-V 106 754

Table 6.7: Hook overhead in clock ticks
or the thread switch example

the logic hosted in a Femto-Container. From this observation, it can
be concluded that, even i this hook is on a very hot code path (as
or the Thread Counter example) the perormance loss is tolerable.
Conversely, the perspective o adding many hooks sprinkled in many
places in the T irmware is realistic without incurring signiicant
perormance loss.

6 . 1 1 D I SCUSS ION

6 . 1 1 . 1 V IRTUAL ISAT ION VS
POWER-EFF IC I ENCY

nherently, virtualisation causes some execution overhead, due to
interpretation o the code. Thus Femto-Containers increase power
consumption or unctionality executed within the VM, compared to
native code execution. However, this drawback is mitigated by several
other actors. First, the absolute power consumption overhead may
be negligible, e.g. i the hosted logic is not perorming long-lasting,
heavy-duty tasks. econd, network transer costs, power consumption
and downtime are saved i sofware updates modiy a Femto-Container
instead o the ull irmware.

6 . 1 1 . 2 CONTROLL ING TENANT PR IV I LEGES

Controlling and granting access to speciic T resources to different
containers or tenants is a complex challenge. ur design includes a
basic permission system based on pre-provisioned hooks, system calls,
and simple contracts between the hosting engine (on behal o the )
and a given container. asically: the  restricts the set o privileges
that can be granted, the container speciies the set o privileges it
requires, and the hosting engine grants the intersection o these sets.
ne limitation o our current simpliied design is that there is only
one ixed set o privileges possible per hook. n case 2 tenants have
different privileges, a second hook must be made available. Additional
mechanisms would be required to overcome this limitation and/or to
enable dynamic privilege levels.

6 . 1 1 . 3 INSTALL T IME VS EXECUT ION T IME

Asmentioned beore, one limitation due to virtualisation is the inherent
slump in execution speed, compared to native code execution. ne
way to remove this overhead is to transpile the portable ePF bytecode
into native instruction code. This could be done in a single pass to
convert the whole application into native instructions in an installation
step. This can result into a speed-up at the cost o extra install-time
overhead. To avoid the issues describe beore on complicating the
run-time security checks, this compilation into native code has to be
done at run-time by the device deploying the code.

6.12 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 99

6 . 1 1 . 4 TENANT-LOCAL STORAGE OF
VALUES

Currently Femto-Containers distinguish between a container-local
value store and a ully device-global value store. This becomes a
limitation when a single tenant needs to share values between VMs,
but needs to keep them private rom other tenants. esolving this issue
requires another level o separation in the value store. A tenant-speciic
store that tracks values shared between VMs would be sufficient.
Another option is to speciy to which value in the store each VM has
access to. This would allow sharing values with a very speciic set o
VMs, while retaining mutual isolation and granting the exact minimal
required permissions.

6 . 1 1 . 5 SECUR ITY VS LONG-RUNN ING
APPL ICAT ION SUPPORT

Whereas rPF was designed to support only short-lived executions,
Femto-Containers extends support to long-running scripts. With
a Femto-Container, an application can speciically be lagged to
be in the long-running mode o operation. n this case, pre-light
checks guaranteeing bounded execution (i.e., presence o a return
instruction) are ignored. ne such application is shown in isting 6.3,
looping on a timer call to periodically measure and process the sensor
value – which would not be valid in traditional ePF ne drawback o
Femto-Containers in this mode o operation, is that the presence o
an internal blocking call are not detected, and it is thus possible to
design an application which consumes unlimited processing power
rom the device. (ote that this nevertheless not the case with the
event-triggered mode o operation, which has limited-time by design.)

ne way to mitigate this issue with long-running scripts, is to enhance
the hosting engine with amechanism allocating a air share o the
processing power available to each currently active Femto-Container.
ne way to implement this is to only execute a limited number o
instructions per execution, and resume the execution afer allowing
other Femto-Containers to run.

6 . 1 1 . 6 F I XED- VS VAR IABLE-LENGTH
INSTRUCT IONS

riginally, ePF scripts are optimized or ast execution on 64-bit
platorms. Compared to other VMs such as Wasm, the resulting
bytecode is relative large. n act, most o the instructions have bit
ields that are ixed at zero. A possible way to reduce the size o these
scripts is to compress the instructions into a variable size instruction
set, removing these ields rom the instructions where possible. This
would create a variable length instruction set based on the ePF
set. For example the immediate ield is not used with hal o the
instructions and would reduce the instructions to 32 bits in size when
removed.

6.12 HAPTER 6: ANDBOXED UNCTION XECUTION FOR ECONFIGURATION 100

6 . 1 2 CONCLUS ION

n this chapter,  introduce Femto-Containers, a new designed middle-
ware runtime architecture, which enables Faa capabilities embedded
on heterogeneous low-power oT hardware. sing Femto-Containers,
authorized, third party maintainers o oT sofware can deploy and
manage via the network mutually isolated sofware modules embed-
ded on amicrocontroller-based device.  provide an open source
implementation o the Femto-Container runtime, which uses the ePF
instruction set ported to microcontrollers, as well as integration in a
common low-power oT operating system, T. A ormally veriied
variant o the VM engine is provided with a ault-isolation guarantee
which ensures that T is shielded rom arbitrary logic loaded and exe-
cuted in a Femto-Container — and such, without requiring any speciic
hardware-based memory isolation mechanism.  then demonstrated
experimentally the perormance o the Femto-Container runtime on
the most common 32-bit microcontroller architectures: Arm Cortex-M,
C-V, EP32.  show that Femto-Containers signiicantly improve
state o the art, by providing Faa-like capabilities with strong security
guarantees on such microcontrollers, while requiring negligible Flash
and AM memory overhead (less than 10%) compared to native
execution.

Femto-Containers is suitable or multiple scenarios and environments
in which constrainedmicrocontroller-based devices are used. For
example, Femto-Containers can be leveraged in a nanosatellite
environment in which measurement and experiment logic is hosted
inside the VM. Together with the T maniest, Femto-Containers
provides a rich Faa-like environment which can be updated on-
demand. This allows or hosting mission code on the satellite, which
can be modiied over-the-air, when it must evolve during the lie-time
o the satellite. n chapter 7, this scenario is presented as use case
with T as update mechanism to deploy hosted logic on Cubeat
payloads.

101

CHAPTER 7

CASE STUDY: SECURE SOFTWARE
RECONFIGURATION ON
NANOSATELLITE

The previous chapters described the different building blocks to design
a secure reconigurable system. ne use case or these building blocks
lies within the Cubeat payloads. Cubeats provide tiny rack slots, 0.25
 each, or low-power payloads hosted on the Cubeat.

As the lietime o these Cubeats is 5 to 10 years, there is a need or up-
dates and reconigurability o the irmware on these satellite payloads.
n this chapter the Thingat payload or Cubeats is described, a
real-world use case where building blocks o previous chapters is used.
ased on Thingat, the Cubedate ramework or updating irmware
andmission control modules is described. The E environment in
which these Cubeats reside, together with the limited power and
network links, provides a constrained environment requiring careul
design o these components.

This work is based on “Cubedate: ecuring ofware pdates in rbit
or ow-Power Payloads Hosted on Cubeats”[6] as presented at the
12th FP/EEE nternational Conerence on Perormance Evaluation
and Modeling in Wired and Wireless etworks.

7. 1 TH INGSAT

7. 1 . 1 SYSTEM ARCH ITECTURE DES IGN

Figure 7.1 describes the Thingat deployment components. t gives an
overview o a typical Cubeat ecosystem, whereby the interaction with
this payload traverses untrusted elements.

LOW-POWER SPACE SEGMENT

The ow-power pace egment comprises the n-oard Computer
(C) and hosted payloads, whom, interconnected via a Controller
Area etwork (CA) bus, which share resources on the Cubeat.

7.1.1.0 HAPTER 7: ECURE OFTWARE ECONFIGURATION ON ANOSATELLITE 102

p
ac
e
eg
m
en
t

1.
M
iss
io
n
Fi
le
+

Fi
rm
w
ar
e
pd
at
e

Gr
ou
nd
e
gm
en
t4.M

ission
esults

2.Em
m
itted

and
orw

arded
data

3.
a
ta
ro
m

o
T
de
vi
ce
s

Thingat oT device
and Ground tation

ubsidiary radio
e.g. oa 868MHz +

2.4 GHz

atellite perator
Ground tations

Comm. ystem
e.g. HF/VHF+-and

E (≈525 km) polar orbit Cubesat subsystem
(4 to 5 passes a day, 30 s to 10min pass over a Earth location)

CA

noard Computer Thingsat hosted payload

T

TM32 MC

sx1302/sx1280 radio
oa 868MHz/2.4 GHz

AC ... Power

Microcontroller

Comm. ystem
e.g. HF/VHF+-and

CP
P

HF / ≈10 kbps
telemetry, command, control
≈300 kb/day

-and
≈1Mbps

arger File

oa
≈1 kbps to 10 kbps

Trusted Part
operated by the hosted payload owner

Untrusted Part
operated by the cubesat owner

Figure 7.1: Thingat hosted payload: deployed components and architecture.

The C provided by the satellite operator consists o amicrocontroller
with all its subsystems to operate the Cubeat: Attitude etermination
and Control ystem (AC), communication subsystems (HF/VHF/-
band or uplink/downlink and antennas) and power subsystem (attery
Management, Energy Harvesting with olar Panels, Auxiliary Power
upply).

The Thingat payload designed or this use case is build around an
TM32F405Gmicrocontroller eaturing an AM Cortex-M4 core and
open source irmware based on T [30]. t embeds both a X1302
transceiver or communications on the 868MHz band and a X1280
transceiver or communications on the 2.4GHz band. Furthermore a
corresponding dual-band patch antenna is designed. When active and
using the 868MHz band, the Thingat payload consumes at 3.3 V:

• 90mA in standby,

• 110mA during a rame reception (X) and

• 300mA during a rame transmission (TX) at the 27dmmaximum
power.

y operating in the milliwatt range, our payload achieves low-power

7.1.2.0 HAPTER 7: ECURE OFTWARE ECONFIGURATION ON ANOSATELLITE 103

consumption what could not have been achieved with a raspberry pi or
without the de-acto low-power oa technology.

GROUND SEGMENTS

There are two ground segment elements that communicate with the
Thingat payload, the atevolution ground stations and custom
Thingat oa ground stations.

The atevolution Ground tations are provided by the Cubeat
operator, but not necessarily owned by the Cubeat operator, to
communicate via HF/VHF with the C, and indirectly with the
payload. This can be done directly through a Command & Control
Center, which acts as a broker between payloadmaintainers and
hosted payload. This communication path provides indirect access to
the payload.

The Thingat oa Ground tations provide a low cost and simple
ground deployed andmaintained which can communicate via oa
directly with the Thingat payload. These stations are based on an
EP32 microcontroller, and a 2.4GHz X1280-oa transceiver, also
running an open source irmware based on T.

7. 1 . 2 COMMUN ICAT ION CHARACTER IST ICS
OVERV IEW

Thingat payload communicates either directly via ow Power WA
(PWA), or indirectly via the HF/VHF link provided by the Cubeat’s
C. Multiple avenues o communication are available or the Thingat
payload. t communicates either directly via PWA, or indirectly via
the HF/VHF link provided by the Cubeat’s C.

IND IRECT COMMUNICAT ION CHARACTER IST ICS
V IA UHF/VHF

Cubeat-G communications are typically done on amateur requency
bands (HF/VHF) with typically low data rates ranging rom 9.6 kbit/s to
100 kbit/s. A polar E satellite will typically pass over a given ground
station 2 to 4 times/day, each pass having a communication window o
5min to 10min. For Thingat, the Cubeat perator provides only 2
ground stations, which are both in Europe, communicating with the
Cubeat via a 10 kbit/s HF/VHF link. Thus, the daily throughput is
roughly 1 500 k, corresponding to 2G x 2 passes/day x 5-min pass
duration x 10 kbit/s. However, this throughputmust be shared between
communications to/rom the C, or telecommand/telemetry/update,
and to- and rom hosted payloads. Thereore in practice, the total
communication budget avail able or Thingat via the HF/VHF link is
around 300K/day.

D IRECT COMMUNICAT ION SETUP V IA LPWAN

Thingat can communicate directly with oa. n principle, although it
is not used as such so ar, this communication link could also be used

7.2.1 HAPTER 7: ECURE OFTWARE ECONFIGURATION ON ANOSATELLITE 104

to transport sofware updates. The Thingat payload may act as either:

1. A at-oT end-device (E) that will send oA rames to terrestrial
oaWA gateways or a Thingat ground stations.

2. An in-orbit oa sniffer.

3. A store-carry-and-orward oa gateway.

Patterns 1 and 2 allow to benchmark simple ground-space oa links
by computing statistics over multiple sent/received rames. Pattern 3 is
a more complex scenario: the satellite stores packets received rom the
at-oT end-device carries them and delivers them once oa ground
stations are inside the ootprint o the satellite.

7. 1 . 3 INTERM ITTENT COMMUNICAT ION
AND POWER SUPPLY

ne issue inherent about the setup is that the Thingat payload is not
constantly powered on. Typically, at any point in time, only one single
hosted payload is powered on. For a 3, 1 is dedicated to the C
and the remaining 2 is available or hosted payloads, 8 payloads slots
o 0.25 in the case o Thingat. Thereore, on average Thingat is
powered only 1/8th (12.5%) o the time, urther reduced by other
actors such as mission speciicities, regulations, battery level and
others.

7. 1 . 4 HOSTED PAYLOAD UPDATE
REQU IREMENTS

ata exchanges between the Payload Maintainer and Thingat (tep 5
on Figure 7.2) consist o downlinks: used by Thingat to send mission
results (radio metadata, rame stats, collected oa rames) and
diagnosis data (debug ino on ailed missions/updates) and uplinks:
used or sofware updates o two categories:

1. Firmware updates: to ix bugs, add/improve unctionality,
typically ≈200 k per irmware, 1 irmware/month.

2. Mission updates: to conigure scenarios, typically ≈700  per
mission scenario, 1 scenario/day.

7. 2 SOFTWARE UPDATE
IMPLEMENTAT ION

7. 2 . 1 SECUR ITY REQU IREMENTS

The minimal security guarantees aimed or with Cubedate are authen-
ticity and integrity o sofware updates delivered over the network,
during the lietime o the satellite mission, approximately 5 to 10 years.
Cubedate must allow or crypto agility, i.e. update the crypto primitives
used to secure update to the satellite while in operation. This need
can be dictated either by cryptography’s evolving state-o-the-art
(implementation/algorithm vulnerabilities are discovered) or by

7.2.3 HAPTER 7: ECURE OFTWARE ECONFIGURATION ON ANOSATELLITE 105

3. Cubeat
carries oa
packets

2. Cubeat
stores oa
packets

oa oT
end-devices

Cubeat
Footprint

1. Es send
oa packets

4. Cubeat relays
oa packets
towards G

5. Firmware & Mission
pload/esult &
ebug ownload

Terrestrial
nternetThingat

oa etwork
erver

Cubeat Command
& Control Center

Thingat
oa Communications

Cubeat operator
VHF/HF

Communications

Thingat oa
Groundtations Cubeat perator

Groundtations

Figure 7.2: Thingat in-orbit communication patterns.

the need to transer the trust anchor to a new entity, or when the
authorized maintainer has changed. Additional guarantees beyond
authenticity/integrity should also be possible with Cubedate, such as
conidentiality, sofware update replay attacks, or sofware update
mismatch attacks.

7. 2 . 2 TRUST ANCHOR

ur model is based on a single trust anchor: the secret key rom the
single authorized maintainer or the Cubeat hosted payload. There is
no mitigation i this trust anchor used is compromised. t relies on the
maintainers’ ability to keep their private keys secure. Extensions using
a possible hierarchical public key inrastructure are possible but out o
scope or this work.

7. 2 . 3 CUBEDATE SOFTWARE L IFE-CYCLE
PHASES

The basic process used or securing authenticity and integrity o sof-
ware updates is decomposed in six phases shown in Figure 7.3. uring
a preliminary, pre-light phase (Phase 0) the authorized maintainer
or the Cubeat-hosted payload produces and lashes the payload
with commissioning material: a bootloader, the initial irmware, and
authorized crypto material, including a public key, and a cryptographic

7.2.4 HAPTER 7: ECURE OFTWARE ECONFIGURATION ON ANOSATELLITE 106

hash unction. nce the hosted payload is commissioned it can be sent
to the Cubeat operator o installation in the Cubeat.

nce the Cubeat is in orbit, the hosted payload maintainer can trigger
iterations through cycles o Phases 1 to 5, whereby the authorized
maintainer can build a new sofware update (Phase 1), hash the update
and sign the hash (Phase 2) then push a network transer (PT) towards
the hosted payload via the ground station and the C (Phase 3.1). The
next time it wakes up, the hosted payload can then ping and etch (GET)
the update rom the C (Phase 3.2), proceed to veriy the signature
and the hash (Phase 4), and upon successul veriication, install/boot
the new sofware (Phase 5), otherwise the update is dropped.

Phase 4
Auth.: Check sign.
ntegrity: Check hash
Phase 5
Check K? nstall.
(Else: log alert)

Phase 3.2
Fetch update

Phase 3.1
etwork transer

Phase 2
Hash & ign

Phase 1
uild update

Phase 0
Commision

Maintainer
(, ) Host on

Cubeat

Ground
tation

C

PT

PT
GET

ut-o-band
Provision Public Key , hash unction

Figure 7.3: Cubeat hosted payload secure sofware update process.

7. 2 . 4 SUPPORT ING NETWORK TRANSPORT
HETEROGENE ITY

This aspect concernsPhase 3.1 and 3.2 in Figure 7.3. ecurity guarantees
on sofware updates must remain valid end-to-end. epending on the
use-case, “end-to-end” spans differently, as depicted or example in
Figure 7.4. n the most complex case tackled in this work, end-to-end
means all the way rom the hosted payload sofware maintainer to
the payload hosted in orbit on the Cubeat. ofware updates may
be transported over one or more network links o varying nature
such as either developer-to-ground station link (nternet) or ground
station-to-Cubeat links (HF/VHF, oa…) or intra-Cubeat buses
(CA, 2C, -232…).

ntermittent power supply, combined with orbiting and radio range
limitations impacts the reliance o the network connectivity to/rom

7.2.6.0 HAPTER 7: ECURE OFTWARE ECONFIGURATION ON ANOSATELLITE 107

the hosted payload: establishing a delay-tolerant path and in-network
data cachingmight be required. To cope with this wide variety o
network paths and links, including ultra-constrained low-power
elements, different approaches can be envisioned at the network
layer, the transport layer and the application layer. Approaches span
rom proprietary solutions to standards such as the low-power Pv6
protocol stack (6oWPA, P, CoAP) or experimental stacks such
as inormation-centric networking which beneits rom in-network
caching even with small caches on microcontrollers [84].

evertheless, in order to retain generality, Cubedate does not speciy
any particular approach at the network, transport and application
layers to enable the delivery o sofware updates across the network.
Cubedate only aims to guarantee end-to-end security properties or
the sofware update binaries that are delivered, somehow, over the
network.

Hosted Payload
Maintainer

nternet
Ground
tationCHosted

Payload

End-to-End Cubeat

End-to-End Cubeat Host Figure 7.4: Cubeat hosted payload
sofware update security end-to-end.

7. 2 . 5 SUPPORT ING UPDATED SOFTWARE
HETEROGENE ITY

This aspect concerns both Phase 1 and Phase 5 in Figure 7.3. As seen in
subsection 7.2.3, sofware updates may be o various nature and
size. Cubedate aims to support the samemechanism, worklow and
guarantee to update the Cubeat (1) irmware updates, (2) mission
scenario iles and (3) runtime coniguration iles.

For this reason, choose not to rely on specialized approaches such as
F (evice Firmware pdate [33]) which assumes that the sofware is
irmware and that the device is connected directly via some local bus
connection (e.g. ).

nstead, the aim is to combine the use o generic and standardmetadata
characterizing sofware updates and state-o-the-art cryptographic
primitives applicable on most low-power microcontrollers and a large
variety o low-power networks, as described below.

7.2.6.0 HAPTER 7: ECURE OFTWARE ECONFIGURATION ON ANOSATELLITE 108

7. 2 . 6 LOW-POWER END-TO-END SECUR ITY
US ING SU IT

Cubedate leverages the T maniest [3], an updated ormat as
presented in chapter 4. The Cubedate sofware update binary itsel can
be either encapsulated in the T maniest, or transerred separately
based on the  provided in the maniest. For instance, the metadata
includes a sequence number (preventing unwanted rollbacks), the
expected device type (preventing sofware mismatch), the HA-256
digest o the sofware update binary and o themaniest, and the
Ed25519 digital signature o themaniest (the metadata). As such,
using Cubedate, sofware updates or payload hosted on Cubeats
mitigate attacks including:

TAMPERED SOFTWARE UPDATE ATTACKS

An attacker may try to update the oT device with a modiied and
intentionally lawed sofware image. To counter this threat, Cubedate
uses digital signatures on a hash o the image binary and the metadata
to ensure integrity o both the irmware and its metadata.

UNAUTHOR IZED SOFTWARE UPDATE ATTACKS

An unauthorized party may attempt to update the oT device with
modiied image. sing digital signatures and public key cryptography,
Cubedate ensures that only the authorized maintainer (holding the
authorized private key) will be able to update the device.

SUPPORT ING CRYPTO AG IL I TY

The irst level o crypto agility enabled by Cubedate uses lexibility
provided by the T standard speciication: while keeping the same
metadata and worklow, diverse crypto primitives backends can be
used. For instance, to upgrade rom pre- to post-quantum security,
digital signature perormed with Ed25519 (elliptic curve crypto), can be
swapped or hash-based signatures, such as H-M as described in
chapter 3.

The second level o crypto agility enabled by Cubedate leverages a
dedicated embedded runtime architecture: on the one hand, the
sofware update manager (implementing T-related operations) is
placed in the irmware image itsel. n the other hand, cryptographic
operations are perormed in sofware only.

Thus, changing the trust anchor stored is as simple as swapping a public
key in the next irmware’s update manager. Authorization to update
the irmware can thus be easily delegated to another maintainer, who
can take over the production and the roll out o authorized updates.
Furthermore, the update manager in the next irmware image could
implement and use upgraded cryptographic primitives.

7.3.1 HAPTER 7: ECURE OFTWARE ECONFIGURATION ON ANOSATELLITE 109

Table 7.1: Cubedate implementa-
tion: memory lash ootprint o the
Thingat irmware with and without the
Cubedate component.

Thingat +Cubedate

CA 8 762 8 762
Crypto 7 386 13 760
CoAP 2 192 1 632
CP 11 771 12 653
T 0 7 425
oa GW 45 688 45 688
Firmware 108 881 114 088

Total 184 680 204 008

Table 7.2: Cubedate implementa-
tion: memory AM ootprint o the
Thingat irmware with and without the
Cubedate component.

Thingat +Cubedate

CA 10 774 10 774
Crypto 633 64
CoAP 1 024 1 024
CP 8 541 8 541
T 0 3 200
oa GW 22 300 22 300
Firmware 7 008 8 225

Total 50 280 54 128

Table 7.3: Cubedate implementation:
T metadata size.

Component ize

equence umber 4
Maniest igest 32
ata igest 32
dentiiers 32
ata- 64
Authentication 64
ther 96

Total 324

GUARANTEES BEYOND
AUTHENT IC ITY/ INTEGR ITY

Cubedate may also guarantee conidentiality by optionally encrypting
sofware updates transmitted over the network. t is perormed
using the encrypt/decrypt mechanism provided by the T speciica-
tions [164], using a symmetric cryptographic key commissioned in
the update manager by the authorizedmaintainer. Conidentiality
can mitigate additional cyberattacks leveraging analysis o Cubeat
irmware/sofware binaries.

Going beyond authenticity, integrity and conidentiality guarantees or
sofware updates delivered over the network, using Cubedate also
mitigates other attacks including the reply attack and sofware update
mismatch attack vectors covered by T as described in chapter 4

7. 3 PERFORMANCE EVALUAT ION

n the ollowing, code measurements where generated compiling with
AM GCC 10.2.1, optimized or code size. As code base, T release
2022.01 and T conigured with Ed25519 digital signatures provided
by the C25519 crypto library is used, as this library has a particular
small memory ootprint [3].

7. 3 . 1 MEMORY FOOTPR INT OVERHEAD

To evaluate the AM and Flash ootprint o our Cubedate implementa-
tion, it is applied to the Thingat use-case, compiled or the hosted
payload hardware described in subsection 7.1.1.

n Table 7.1 and Table 7.2, the AM and Flash memory requirements or
a Thingat irmware with/without Cubedate-compliant updates are
compared. t is observed that Cubedate requires a memory budget o
≈4 Ki o AM and ≈19 Kio Flash, which represents roughly a 10%
increase in the total AM and Flash memory budget or Thingat.

• ThingSat reers to the Thingat payload application with no
sofware updates support

• Cubedate implementation o the Cubedate architecture on the
Thingat payload

• CA stack as well as low level interace

• Crypto includes all cryptographic algorithms such as digest
algorithm, digital signature, Elliptic curve with bignum code, as
well as pseudo-random number generator

• CoAP protocol library (CoAP endpoint handler stack excluded)

• CP (Cube at Protocol) network stack to communicate with the
C.

• oa GW includes the sx1302 driver as well as the oa gateway
code

7.4.3 HAPTER 7: ECURE OFTWARE ECONFIGURATION ON ANOSATELLITE 110

• T encompasses all components enabling retrieval and in-
stallation o suit data (w or other), this include e.g. the CoAP
endpoint stack.

• Firmware: application speciic code related to the Cubeat
Payload excluding the oa gateway

7. 3 . 2 NETWORK TRANSFER OVERHEAD

n the HF/VHF link at 1kb/s, the additional network transer time
induced by the Cubedate irmware size overhead (19K) is roughly 15
seconds. This overhead is reasonable, but non-negligible considering
that a connection to the Cubeat is segmented in time windows o
≈300 seconds.

ext, in Table 7.3 a more detailed look at the metadata, the T
maniest, used to secure Cubedate sofware updates or Thingat is
given. As is visible, the metadata including all C/CE ormatting,
digests (HA-256 hashes) and authentication data (Ed25519 signature)
amounts to ≈330 . Themetadata overhead thus incurs negligible
overhead, an increase o +0.15%, in case o a Thingat irmware
update (o size 200K on average, recall subsection 7.2.3). However,
or smaller sofware update such as updating a mission scenario
(average size 700) the metadata overhead is signiicant (almost +50%).
evertheless, on the HF/VHF link at 1kb/s, this overhead remains
negligible in terms o additional network transer time.

7. 4 D ISCUSS ION

7. 4 . 1 PORTAB IL I TY

olted on top o T, our Cubedate implementation works out-o-
the-box (or is trivially portable) on a very wide variety o low-power
hardware built on Cortex-Mmicrocontrollers: the bulk o the 200+
boards supported by T. However, additional work would be needed
to support other hardware based on different 32-bit microcontroller
architectures (e.g. C-V).

7. 4 . 2 NETWORK STACK S IMPL IF ICAT ION &
STANDARD IZAT ION

The use o CP was mandated by the Cubeat operator. The purpose o
CP was to provide an ultra-low ootprint equivalent o the P protocol
stack or Cubeats with legacy (8-bit) microcontrollers. However, on
modern (32-bit) microcontrollers such as those used in Thingat,
this approach is can be discussed. More widely spread standard
alternatives to CP seems possible or a similar “price”. For example,
T’s deault low-power Pv6 (6oWPA) stack used with static routing
has a ootprint in AM/Flashmemory that is comparable to libCP
memory ootprint. The 6oWPA stack could run directly on the CA
bus or on oa (see 6loCA [168] and CHC [120]).

7.5 HAPTER 7: ECURE OFTWARE ECONFIGURATION ON ANOSATELLITE 111

7. 4 . 3 ALTERNAT IVE CRYPTOGRAPH IC
PR IM IT IVES

n the experimental evaluation, Ed25519 (elliptic curve cryptography)
digital signature providing 128-bit pre-quantum security is used. ne
can consider either alternative primitives, while remaining compliant
with Cubedate and the T standard. ne compromise to signiicantly
decrease network transer and memory ootprint with Cubedate is to
use the symmetric Hash-based Message Authentication Code (HMAC)
instead o digital signatures or authentication. Another option would
be to upgrade security to 128-bit post-quantum security by using
hash-based signature instead o Ed25519.

7. 5 CONCLUS ION

As the space race intensiies, rises the need or state-o-the-art security
to protect sofware updates on multi-tenant Cubeat in orbit. n this
chapter,  present a corresponding case-study: Thingat, a low-power
payload, hosted on a Cubeat operated by a separate entity, currently
orbiting. ased on the Thingat payload, a ramework achieving strong
security guarantees and low overhead, or continuous deployment
o sofware over the air on multi-tenant Cubeat is designed called
Cubedate. Cubedate provides a ull update environment or both ull
irmware updates as well as the transer o mission script ile or VM
execution. The open source implementation o Cubedate provided and
evaluated or Thingat was built to be reusable on a wide variety o
low-power Cubeat hardware.

With the implementation here  show how T and the other compo-
nents presented in this work can be used to maintain and adapt the
logic running as Cubeat payload. Mission logic can be adapted on
the ly via the T updates and can potentially be isolated inside a
Femto-Container, allowing third party contributors to run mission code
on the Thingat platorm.

112

CHAPTER 8

CONCLUSION

ofware reconiguration, while ubiquitous on desktop and server
systems, is ledgling on oT devices. The challenges associated with the
constrained nature o the devices and network links hamper the design
o solutions. This thesis presents a number o solutions to address
these challenges. This thesis presented a number o novel solutions
enabling efficient sofware reconiguration on resource-constrained
devices, at several levels o the embedded sofware stack. Compared
to prior work, these contributions offer a more uture-proo and
open-source implementation or the smallest o devices in the ield.

8 . 1 SUMMARY

As communication between constrained devices andmanagement
systems needs to be secured against malicious attacks, cryptographic
primitives are required as base or any communication. For this
purpose, chapter 3 provided a comparative evaluation state-o-the-art
pre-quantum digital signatures with promising post-quantum digital
signature algorithms. The benchmarks use real world hardware
spanning a set o different 32 bit architectures. emonstrated is the
additional perormance cost involved with the current post-quantum
signature algorithms. While not all new post-quantum algorithms are
able to run on all hardware, sufficient algorithms are available to have
candidates available within the constraints around embedded devices.

igital signature algorithms can be applied to secure irmware updates
against tampering and a variety o other attack vectors. For this
purpose in chapter 4, the design and evaluation o an open irmware
update maniest standard with respect to current irmware called
T is addressed. While secure updates on constrained devices
are not trivial and must protect against numerous attack vectors, as
well as ensure a design suitable or constrained devices, the T
maniest speciication manages to achieve these goals. The design
o the maniest, leveraging both C and CE, achieves a small
size with to the irmware. This ensures a low overhead on both the
network links to the devices and the constrained devices themselves.
emonstrated is that resource overhead o the implementation is
sufficiently low that standards-compliant irmware updates can be
provided on microcontrollers with memory as low as 32 k o AM and
128 k o lash. This provides a undamental and open building block

8.1 HAPTER 8: ONCLUSION 113

towards securing the oT ecosystem against uture vulnerabilities. The
above properties, combined with the open source implementation
 published and integrated in the T operating system, provide
a undamental building block towards securing the oT ecosystem
against uture vulnerabilities.

The T speciication itsel is concerned primarily with the secure
delivery o irmware updates However not all updates require a ull
irmware update to patch required unctionality. Thereore, in chapter 5
presented, a new VM optimized or constrained devices is proposed,
based on the popular ePF virtual machine (VM) in the inux kernel.
rPF provides a tiny register-based VM, which when employed or some
code, incurs negligiblememory overhead compared to native execution
o this code in the host . While extra overhead is added by execution
o sofware modules inside rPF, the code executed is isolated within
the VM and can not inluence the memory outside the VMwithout
speciic permissions. Furthermore rPF does not rely on any hardware
security mechanisms or the memory isolation, it is portable across a
wide range o architectures. Experimental comparative evaluation
against a WebAssembly runtimes onmicrocontrollers shows that
rPF is a promising approach to isolate small sofware modules on
constrained devices. While rPF is shown to be slower than the astest
WebAssembly runtimes on microcontrollers, the overhead when
adding rPF to existing applications is only around 10%, signiicantly
less than other VMs.

uilding on top o the rPF virtual machine (VM), chapter 6 then
presented a newmiddleware runtime architecture design speciically
or constrained devices: Femto-Containers Femto-Containers provides
a Faa-like capabilities environment or constrained embedded devices,
allowingmodular andmulti-tenant execution o small isolated sofware
modules. everal implementation have been published as open
source, including an implementation o a ormally veriied hosting
engine providing ault-isolation guarantees (in collaboration with
ormal veriication experts). With this, Femto-Container provides an
isolated runtime without speciic hardware requirements or security.
Experimental benchmarks are provided on commonmicrocontroller
architectures to demonstrate the Faa-like capabilities o Femto-
Container and the negligible lash and AM requirements added by
Femto-Container.

As demonstrating case-study, the Cubedate ramework with Thingat
or updating a low-power payload hosted on Cubeats is provided in
chapter 7. ast but not least, chapter 7. presents Cubedate, a novel
ramework or strong security guarantees and low network transer
overhead or continuous deployments o sofwaremodules in the
challenging environment o Cubeats on ow-Earth rbit (E). To
achieve this, Cubedate applies the results o chapters 4 to 6 to this
use-case. y combining secure sofware updates with T, rPF
virtualisation and Femto-Containers, Cubedate enables convenient
updates o not only irmwares but also individual satellite mission
iles hosted in Femto-Containers. This demonstrates and validates
concretely that, when used together, the components o this thesis

8.2 HAPTER 8: ONCLUSION 114

improve the state-o-the-art by providing a set o secure mechanisms
or managing, isolating and executing irmware modules on tiny
constrained devices.

Together the components o this thesis improve the state-o-the-art by
providing a set o secure mechanisms or managing, isolating and
executing irmware modules on tiny constrained devices.

8 . 2 PERSPECT IVES

Concerning post-quantum digital signatures benchmarked, while
most options are possible to deploy on the constrained devices used,
none o the options match the perormance o the pre-quantum
options. While these algorithms perorm sufficiently to be standardized
by T, when considering them in a constrained scenario their
attractiveness is lacking Each post-quantum digital signature algorithm
requires some concession, either on the signature size or the required
memory. Further exploration or different algorithmsmore suitable
or embedded devices can save considerable memory or network
transer overhead. For example, that the T competition is still
on-going, collaborative work with cryptographers to develop signature
algorithms with signature veriication suitable or constrained devices,
at an increase in resource consumption on the signature generation
side, would be beneicial here.

T maniest as implemented is sufficient or transerring payloads in
a secure way to their target device. The work on the T maniest is
not rozen however, with extensions and new options in the process o
standardization by the ETF. ne particular attractive option is the
ull irmware encryption, extending the security guarantees already
provided with conidentiality. A urther advantage is the shif to
symmetric cryptography, mitigating the need or the costly signature
veriication on the maniest. Furthermore, the T speciication in its
current orm provides a huge amount o lexibility. A more constrained
variant could encompass a larger device base, while still providing the
security level andmain use case o irmware updates.

The rPF VM with Femto-Container on top provide a rich and secure
Faa environment. Multiple avenues o improvements are available on
these technologies, as discussed in chapter 5 and chapter 6. irect
improvements to the rPF VM are possible to increase the perormance
and decrease the application size. Femto-Container itsel is portable
across many different operating systems and device architectures.
However, it heavily relies on the integration into the host operating
system, where providing bindings and acilities o the operating system
to Femto-Container is ofen manual work by developers. nvestigating
how this integration can be simpliied to decrease the burden on the
developers can in turn improve the user experience or developers
working on Femto-Container applications. ne particular avenue or
exploration would be the automatic generation o bindings to the
operating system and the translation o data rom the Femto-Container
VM to host operating system and vice versa.

8.2 HAPTER 8: ONCLUSION 115

Altogether, the challenge o long-termmaintenance o constrained oT
devices in the ield persists. While this thesis addresses a number o
challenges and provides solutions, more work is needed to provide a
solution or these devices. A holistic solution at large scale is required
to address these challenges in an encompassing way [47]. This requires
a solution or constrained device management where sofware updates
and reconiguration is provided as core aspect. More work is needed to
provide a holistic solution, at large scale. For instance, the lack o
convenience o available sofware update back-ends is a bottleneck.
eparate recent work such as [47] also hints at this lack, and points
towards solutions that are similar to what  proposed in my thesis:
combining sofware virtualization over HA and a general-purpose
. All in all, a paradigm shif is still to happen, whereby the update
and reconiguration sofware components o constrained devices
is no longer an aferthought or an extra eature, but instead a core
eature, always-required and always-available on such devices or leets
thereo.

APPENDIX A

BIBLIOGRAPHY

[1] Koen Zandberg and Emmanuel accelli. “Minimal Virtual Machines on oT Microcontrollers: The Case
o erkeley Packet Filters with rPF”. n: 9th IFIP International Conerence on Perormance Evaluation
and Modeling in Wireless Networks, PEMWN 2020, Berlin, Germany, December 1-3, 2020. EEE, 2020,
pp. 1–6. DOI: 10.23919/PEMWN50727.2020.9293081. URL: https://doi.org/10.23919/
PEMWN50727.2020.9293081.

[2] Koen Zandberg, Emmanuel accelli, henghao Yuan, Frédéric esson, and Jean-Pierre Talpin. “Femto-
containers: lightweight virtualization and ault isolation or small sofware unctions on low-power oT
microcontrollers”. n: Middleware ’22: 23rd International Middleware Conerence, Quebec, QC, Canada,
November 7 - 11, 2022. Ed. by Paolo ellavista, Kaiwen Zhang, Abdelouahed Gherbi, aurabh agchi,
Marta Patiño, Giuseppe i Modica, and Julien Gascon-amson. ACM, 2022, pp. 161–173. DOI:
10.1145/3528535.3565242. URL: https://doi.org/10.1145/3528535.3565242.

[3] Koen Zandberg, Kaspar chleiser, Francisco Acosta Padilla, Hannes Tschoenig, and Emmanuel
accelli. “ecure Firmware pdates or Constrained oT evices sing pen tandards: A eality
Check”. n: IEEE Access 7 (2019), pp. 71907–71920. DOI: 10.1109/ACCESS.2019.2919760. URL:
https://doi.org/10.1109/ACCESS.2019.2919760.

[4] Gustavo anegas, Koen Zandberg, Emmanuel accelli, Adrian Herrmann, and enjamin mith.
“Quantum-esistant ofware pdate ecurity on ow-Power etworked Embedded evices”. n:
Applied Cryptography and Network Security - 20th International Conerence, ACNS 2022, Rome, Italy,
June 20-23, 2022, Proceedings. Ed. by Giuseppe Ateniese and aniele Venturi. Vol. 13269. ecture otes
in Computer cience. pringer, 2022, pp. 872–891. DOI: 10.1007/978-3-031-09234-3_43. URL:
https://doi.org/10.1007/978-3-031-09234-3_43.

[5] Zhaolan Huang, Koen Zandberg, Kaspar chleiser, and Emmanuel accelli. “T-M: toolkit
or over-the-air secure updates and perormance evaluation o TinyMmodels”. n: Annals o
Telecommunications (2024), pp. 1–15.

[6] François-Xavier Molina, Emmanuel accelli, Koen Zandberg, idier onsez, and livier Alphand.
“Cubedate: ecuring ofware pdates in rbit or ow-Power Payloads Hosted on Cubeats”. n:
12th IFIP/IEEE International Conerence on Perormance Evaluation and Modeling in Wired and
Wireless Networks, PEMWN 2023, Berlin, Germany, September 27-29, 2023. EEE, 2023, pp. 1–6.
DOI: 10.23919/PEMWN58813.2023.10304910. URL: https://doi.org/10.23919/
PEMWN58813.2023.10304910.

[7] rendanMoran,HannesTschoenig,Henkirkholz, KoenZandberg, andØyvindønningstad.AConcise
Binary Object Representation (CBOR)-based Serialization Format or the Sofware Updates or Internet o
Things (SUIT) Maniest. nternet-raf draf-iet-suit-maniest-25.Work in Progress. nternet Engineering
Task Force, Feb. 2024. 101 pp. URL: https://datatracker.ietf.org/doc/draft-ietf-
suit-manifest/25/.

[8] henghao Yuan, Frédéric esson, Jean-Pierre Talpin, amuel Hym, Koen Zandberg, and Emmanuel
accelli. “End-to-End Mechanized Proo o an ePF Virtual Machine or Microcontrollers”. n:
Computer Aided Veriication - 34th International Conerence, CAV 2022, Haia, Israel, August 7-10,
2022, Proceedings, Part II. Ed. by haron hoham and Yakir Vizel. Vol. 13372. ecture otes in

.0 PPENDIX : IBLIOGRAPHY 117

Computer cience. pringer, 2022, pp. 293–316. DOI: 10.1007/978-3-031-13188-2_15. URL:
https://doi.org/10.1007/978-3-031-13188-2_15.

[9] chleiser, Kaspar and Zandberg, Koen and Abadie, Alexadre and Molina, François-Xavier. sys/suit:
initial support or SUIT irmware updates. 2019. URL: https://github.com/RIOT-OS/RIOT/
pull/11818.

[10] Zandberg, Koen. libcose: Constrained node COSE library. 2022. URL: https://github.com/
bergzand/libcose.

[11] Zandberg, Koen. NanoCBOR: CBOR library aimed at heavily constrained devices. 2024. URL: https:
//github.com/bergzand/NanoCBOR.

[12] Zandberg, Koen. rBPF: Initial include o small virtual machine. 2021. URL: https://github.com/
RIOT-OS/RIOT/pull/19372.

[13] Zandberg, Koen. SUIT: Introduction o a payload storage API or SUIT maniest payloads. 2020. URL:
https://github.com/RIOT-OS/RIOT/pull/15110.

[14] Zandberg, Koen and accelli, Emmanuel. Femto-Containers: Femto-Containers RIOT Implementation
& Hands-on Tutorials. 2022. URL: https://github.com/future-proof-iot/Femto-
Container_tutorials.

[15] Francisco Javier Acosta Padilla et al. “The Future o oT ofware Must be pdated”. n: IAB Workshop
on Internet o Things Sofware Update (IoTSU). 2016.

[16] Adaruit ndustries. CircuitPython - The easiest way to programmicrocontrollers. 2024. URL: https:
//circuitpython.org/.

[17] Cedric Adjih et al. “FT oT-A: A arge cale pen Experimental oT Testbed”. n: Proc. o IEEE WF-IoT.
ec. 2015.

[18] Alexandru Agache, Marc rooker, Alexandra ordache, Anthony iguori, ol eugebauer, Phil Piwonka,
and iana-Maria Popa. “Firecracker: ightweight virtualization or serverless applications”. n: 17th
USENIX symposium on networked systems design and implementation (NSDI 20). 2020, pp. 419–434.

[19] Zigee Alliance et al. Zigbee Speciication. 2006.
[20] Amazon Web ervices. FreeRTOS - Market leading RTOS (Real Time Operating System) or embedded

systems with Internet o Things extensions. 2024. URL: https://www.freertos.org/.
[21] Christian Amsüss, John Preuß Mattsson, and Göran elander. Constrained Application Protocol (CoAP):

Echo, Request-Tag, and Token Processing. FC 9175. Feb. 2022. DOI: 10.17487/RFC9175. URL:
https://www.rfc-editor.org/info/rfc9175.

[22] Christian Amsüss, Zach helby, Michael Koster, Carsten ormann, and Peter Van der tok. Constrained
RESTul Environments (CoRE) Resource Directory. FC 9176. Apr. 2022. DOI: 10.17487/RFC9176. URL:
https://www.rfc-editor.org/info/rfc9176.

[23] AndrewW Appel. Program logics or certiied compilers. Cambridge niversity Press, 2014.
[24] AM. Arm Cortex-M Processor Comparison Table. 2023. URL: https://developer.arm.com/

documentation/102787/0300/.
[25] Faisal Aslam, uminous Fennell, Christian chindelhauer, Peter Thiemann, Gidon Ernst, Elmar

Haussmann, tean ührup, and Zastash A zmi. “ptimized java binary and virtual machine or tiny
motes”. n: Distributed Computing in Sensor Systems: 6th IEEE International Conerence, DCOSS 2010,
Santa Barbara, CA, USA, June 21-23, 2010. Proceedings 6. pringer. 2010, pp. 15–30.

[26]  Asokan, Thomas yman, orrathep attanavipanon, Ahmad-eza adeghi, and Gene Tsudik.
“AE: Architecture or secure sofware update o realistic embedded devices”. n: IEEE
Transactions on Computer-Aided Design o Integrated Circuits and Systems 37.11 (2018), pp. 2290–2300.

[27] Atomic bject. heatshrink: data compression library or embedded/real-time systems. ec. 2015. URL:
https://github.com/atomicobject/heatshrink.

[28] Emmanuel accelli, Joerg oerr, hinji Kikuchi, Francisco Acosta Padilla, Kaspar chleiser, and
an Thomas. “cripting over-the-air: towards containers on low-end devices in the internet o things”.
n: 2018 IEEE International Conerence on Pervasive Computing and Communications Workshops
(PerComWorkshops). EEE. 2018, pp. 504–507.

[29] Emmanuel accelli, Joerg oerr, hinji Kikuchi, Francisco Acosta Padilla, Kaspar chleiser, and
an Thomas. “cripting over-the-air: towards containers on low-end devices in the internet o things”.

.0 PPENDIX : IBLIOGRAPHY 118

n: 2018 IEEE International Conerence on Pervasive Computing and Communications Workshops
(PerComWorkshops). EEE. 2018, pp. 504–507.

[30] Emmanuel accelli, Cenk Gündogan, liver Hahm, Peter Kietzmann, Martine enders, Hauke
Petersen, Kaspar chleiser, Thomas C. chmidt, and Matthias Wählisch. “T: An pen ource
perating ystem or ow-End Embedded evices in the oT”. n: IEEE Internet Things J. 5.6 (2018),
pp. 4428–4440. DOI: 10.1109/JIOT.2018.2815038. URL: https://doi.org/10.1109/
JIOT.2018.2815038.

[31] Gustavo anegas and aniel J. ernstein. “ow-Communication Parallel QuantumMulti-Target
Preimage earch”. n: Selected Areas in Cryptography - SAC 2017 - 24th International Conerence,
Ottawa, ON, Canada, August 16-18, 2017, Revised Selected Papers. Ed. by Carlisle Adams and
Jan Camenisch. Vol. 10719. ecture otes in Computer cience. pringer, 2017, pp. 325–335.
DOI: 10.1007/978-3-319-72565-9_16. URL: https://doi.org/10.1007/978-3-319-
72565-9_16.

[32] mitry ankov, Evgeny Khorov, and Andrey yakhov. “n the imits o oaWA Channel Access”. n:
2016 International Conerence on Engineering and Telecommunication (EnT). 2016, pp. 10–14. DOI:
10.1109/EnT.2016.011.

[33] J eningo. Update irmware in the ield using a microcontrollers du mode. 2018.
[34] aniel J ernstein et al. “ChaCha, a variant o alsa20”. n:Workshop record o SASC. Vol. 8. 1. Citeseer.

2008, pp. 3–5.
[35] aniel J ernstein. “Curve25519: new iffie-Hellman speed records”. n: International Workshop on

Public Key Cryptography. pringer. 2006, pp. 207–228.
[36] aniel J ernstein. “The Poly1305-AE message-authentication code”. n: International workshop on

ast sofware encryption. pringer. 2005, pp. 32–49.
[37] aniel J ernstein and Tanja ange. “Post-quantum cryptography”. n: Nature 549.7671 (2017),

pp. 188–194.
[38] Guido ertoni, Joanaemen,Michaël Peeters, andGilles Van Assche. “Keccak”. n: Annual international

conerence on the theory and applications o cryptographic techniques. pringer. 2013, pp. 313–314.
[39] Ward eullens. “mproved cryptanalysis o V and rainbow”. n: Annual International Conerence on

the Theory and Applications o Cryptographic Techniques. pringer. 2021, pp. 348–373.
[40] Martin jörklund. The YANG 1.1 Data Modeling Language. FC 7950. Aug. 2016. DOI: 10.17487/

RFC7950. URL: https://www.rfc-editor.org/info/rfc7950.
[41] Carsten ormann, Mehmet Ersue, and Ari Keränen. Terminology or Constrained-Node Networks.

FC 7228. May 2014. DOI: 10.17487/RFC7228. URL: https://www.rfc-editor.org/info/
rfc7228.

[42] Carsten ormann and Paul E. Hoffman. Concise Binary Object Representation (CBOR). FC 7049. ct.
2013. DOI: 10.17487/RFC7049. URL: https://www.rfc-editor.org/info/rfc7049.

[43] Carsten ormann and Paul E. Hoffman. Concise Binary Object Representation (CBOR). FC 8949. ec.
2020. DOI: 10.17487/RFC8949. URL: https://www.rfc-editor.org/info/rfc8949.

[44] Carsten ormann, imon emay, Hannes Tschoenig, Klaus Hartke, ill ilverajan, and rian aymor.
CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets. FC 8323. Feb. 2018. DOI:
10.17487/RFC8323. URL: https://rfc-editor.org/rfc/rfc8323.txt.

[45] Carsten ormann and Zach helby. Block-Wise Transers in the Constrained Application Protocol (CoAP).
FC 7959. Aug. 2016. DOI: 10.17487/RFC7959. URL: https://www.rfc-editor.org/info/
rfc7959.

[46] Guillaume ouffard and éo Gaspard. “Hardening a Java Card Virtual Machine mplementation with
the MP”. n: Symposium sur la sécurité des technologies de l’inormation et des communications
(SSTIC). 2018.

[47] Conner radley and avid arrera. “Escaping Vendor Mortality: A ew Paradigm or Extending oT
evice ongevity”. n: Proceedings o the 2023 New Security Paradigms Workshop, NSPW 2023,
Segovia, Spain, September 18-21, 2023. ACM, 2023, pp. 1–16. DOI: 10.1145/3633500.3633501.
URL: https://doi.org/10.1145/3633500.3633501.

.0 PPENDIX : IBLIOGRAPHY 119

[48] roadband Forum. TR-069, CPE WAN Management Protocol Version 1.4. Mar. 2018. URL: https:
//www.broadband-forum.org/technical/download/TR-069.pdf.

[49] roadband Forum. User Services Platorm. URL: https://usp.technology/.
[50] iels rouwers, Peter Corke, and Koen angendoen. “arjeeling, a Java compatible virtual machine

or microcontrollers”. n: Proceedings o the ACM/IFIP/USENIX Middleware’08 Conerence Companion.
2008, pp. 18–23.

[51] tephen rown and Cormac J reenan. “ofware updating in wireless sensor networks: A survey and
lacunae”. n: Journal o Sensor and Actuator Networks 2.4 (2013), pp. 717–760.

[52] ytecode Alliance.WebAssembly Micro Runtime (WAMR). ct. 2020. URL: https://github.com/
bytecodealliance/wasm-micro-runtime.

[53] Cadence. Xtensa LX Processor Platorm. 2024. URL: https://www.cadence.com/en_US/
home/tools/silicon-solutions/compute-ip/tensilica-xtensa-controllers-
and-extensible-processors/xtensa-lx-processor-platform.html.

[54] Cesanta ofware. mJS - a new approach to embedded scripting. Jan. 24, 2017. URL: https:
//mongoose-os.com/blog/mjs-a-new-approach-to-embedded-scripting/.

[55] Cesanta ofware.Mongoose OS - reduce IoT irmware development time up to 90%. 2024. URL:
https://mongoose-os.com/.

[56] André Chailloux, María aya-Plasencia, and André chrottenloher. “An Efficient Quantum Collision
earch Algorithm and mplications on ymmetric Cryptography”. n: Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conerence on the Theory and Applications o Cryptology and
Inormation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II. Ed. by Tsuyoshi Takagi
and Thomas Peyrin. Vol. 10625. ecture otes in Computer cience. pringer, 2017, pp. 211–240.
DOI: 10.1007/978-3-319-70697-9_8. URL: https://doi.org/10.1007/978-3-319-
70697-9_8.

[57] ym Chéour, abrine Khriji, la Kanoun, et al. “Microcontrollers or oT: optimizations, computing
paradigms, and uture directions”. n: 2020 IEEE 6th World Forum on Internet o Things (WF-IoT). EEE.
2020, pp. 1–7.

[58] nc. Cisco ystems. cisco/hash-sigs: A ull-eatured implementation o o the LMS and HSS Hash Based
Signature Schemes rom draf-mcgrew-hash-sigs-07. 2024. URL: https://github.com/cisco/
hash-sigs/.

[59] obert avis, ick Merriam, and igel Tracey. “How embedded applications using an T can stay
within on-chip memory limits”. n: 12th EuroMicro Conerence on Real-Time Systems. Citeseer. 2000,
pp. 71–77.

[60] uca e Feo, avid Kohel, Antonin eroux, Christophe Petit, and enjamin Wesolowski. “Qign:
compact post-quantum signatures rom quaternions and isogenies”. n: Advances in Cryptology–
ASIACRYPT 2020: 26th International Conerence on the Theory and Application o Cryptology and
Inormation Security, Daejeon, South Korea, December 7–11, 2020, Proceedings, Part I 26. pringer.
2020, pp. 64–93.

[61] Fabrizio e antis, Andreas chauer, and Georg igl. “ChaCha20-Poly1305 authenticated encryption
or high-speed embedded oT applications”. n: Design, Automation & Test in Europe Conerence &
Exhibition (DATE), 2017. EEE. 2017, pp. 692–697.

[62] Christoph obraunig, Maria Eichlseder, and Florian Mendel. “Analysis o HA-512/224 and HA-
512/256”. n: Advances in Cryptology - ASIACRYPT 2015 - 21st International Conerence on the Theory and
Application o Cryptology and Inormation Security, Auckland, New Zealand, November 29 - December 3,
2015, Proceedings, Part II. Ed. by Tetsu wata and Jung Hee Cheon. Vol. 9453. ecture otes in
Computer cience. pringer, 2015, pp. 612–630. DOI: 10.1007/978-3-662-48800-3_25. URL:
https://doi.org/10.1007/978-3-662-48800-3_25.

[63] Krishna oddapaneni et al. “ecure FoTA object or oT”. n: IEEE LCN Workshops. 2017.
[64] Adam unkels, iclas Finne, Joakim Eriksson, and Thiemo Voigt. “un-time dynamic linking or

reprogramming wireless sensor networks”. n: Proceedings o the 4th international conerence on
Embedded networked sensor systems. 2006, pp. 15–28.

.0 PPENDIX : IBLIOGRAPHY 120

[65] Adam unkels, jorn Gronvall, and Thiemo Voigt. “Contiki-a lightweight and lexible operating
system or tiny networked sensors”. n: 29th annual IEEE international conerence on local computer
networks. EEE. 2004, pp. 455–462.

[66] Morris J workin. “HA-3 standard: Permutation-based hash and extendable-output unctions”. n:
(2015).

[67] Joshua Ellul and Kirk Martinez. “un-time compilation o bytecode in sensor networks”. n: 2010
Fourth International Conerence on Sensor Technologies and Applications. EEE. 2010, pp. 133–138.

[68] European Commission. Regulation O The European Parliament And O The Council on horizontal
cybersecurity requirements or products with digital elements and amending Regulation (EU) 2019/1020.
2019. URL: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:
52022PC0454.

[69] Matt Fleming. “A Thorough ntroduction to ePF”. n: Linux Weekly News (2017).
[70] J. Fletcher. “An Arithmetic Checksum or erial Transmissions”. n: IEEE Transactions on Communica-

tions 30.1 (1982), pp. 247–252.
[71] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim yubashevsky, Thomas Pornin, Thomas

Prest, Thomas icosset, Gregor eiler, WilliamWhyte, Zhenei Zhang, et al. “Falcon: Fast-Fourier
lattice-based compact signatures over T”. n: Submission to the NIST’s post-quantum cryptography
standardization process 36.5 (2018), pp. 1–75.

[72] ustin Frisch, ven eißmann, and Christian Pape. “An ver the Air pdate Mechanism or EP8266
Microcontrollers”. n: (ct. 2017).

[73] Mario Frustaci, Pasquale Pace, Gianluca Aloi, and Giancarlo Fortino. “Evaluating critical security
issues o the oT world: Present and uture challenges”. n: IEEE Internet o things journal 5.4 (2017),
pp. 2483–2495.

[74] Gartner, nc. Gartner Says 8.4 Billion Connected ”Things” Will Be in Use in 2017, Up 31 Percent From 2016.
Feb. 7, 2017. URL: https://www.gartner.com/en/newsroom/press-releases/2017-
02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-
up-31-percent-from-2016.

[75] Evgeny Gavrin, ung-Jae ee, uben Ayrapetyan, and Andrey hitov. “ltra lightweight Javacript
engine or internet o things”. n: Companion Proceedings o the 2015 ACM SIGPLAN International
Conerence on Systems, Programming, Languages and Applications: Sofware or Humanity. 2015,
pp. 19–20.

[76] Gareth George, Fatih akir, ich Wolski, and Chandra Krintz. “anolambda: mplementing unctions
as a service at all resource scales or the internet o things”. n: 2020 IEEE/ACM Symposium on Edge
Computing (SEC). EEE. 2020, pp. 220–231.

[77] George obotics imited. MicroPython - Python or microcontrollers. 2023. URL: https://micropyt
hon.org/.

[78] ov K. Grover. “A Fast QuantumMechanical Algorithm or atabase earch”. n: Proceedings o the
Twenty-Eighth Annual ACM Symposium on the Theory o Computing, Philadelphia, Pennsylvania, USA,
May 22-24, 1996. Ed. by Gary . Miller. ACM, 1996, pp. 212–219. DOI: 10.1145/237814.237866.
URL: https://doi.org/10.1145/237814.237866.

[79] Kai Grunert. “verview o Javacript engines or resource-constrained microcontrollers”. n: 2020 5th
International Conerence on Smart and Sustainable Technologies (SpliTech). EEE. 2020, pp. 1–7.

[80] Fiona Guerin, Teemu Kärkkäinen, and Jörg tt. “Towards a Programmable World: ua-based
ynamic ocal rchestration o etworked Microcontrollers”. n: Proceedings o the 14th Workshop on
Challenged Networks. 2019, pp. 13–18.

[81] obbert Gurdeep ingh and Christophe cholliers. “WAuino: a dynamic WebAssembly virtual
machine or programming microcontrollers”. n: Proceedings o the 16th ACM SIGPLAN International
Conerence on Managed Programming Languages and Runtimes. 2019, pp. 27–36.

[82] Andreas Haas, Andreas ossberg, erek  chuff, en  Titzer, Michael Holman, an Gohman, uke
Wagner, Alon Zakai, and JF astien. “ringing theweb up to speedwithWebAssembly”. n: Proceedings
o the 38th ACM SIGPLAN Conerence on Programming Language Design and Implementation. 2017,
pp. 185–200.

.0 PPENDIX : IBLIOGRAPHY 121

[83] liver Hahm, Emmanuel accelli, Hauke Petersen, and icolas Tsifes. “perating systems or low-end
devices in the internet o things: a survey”. n: IEEE Internet o Things Journal 3.5 (2015), pp. 720–734.

[84] liver Hahm, Emmanuel accelli, Thomas C. chmidt, Matthias Wählisch, Cédric Adjih, and aurent
Massoulié. “ow-power internet o things with  & cooperative caching”. n: Proceedings o the 4th
ACM Conerence on Inormation-Centric Networking, ICN 2017, Berlin, Germany, September 26-28, 2017.
Ed. by Thomas C. chmidt and Jan eedor. ACM, 2017, pp. 98–108. DOI: 10.1145/3125719.
3125732. URL: https://doi.org/10.1145/3125719.3125732.

[85] Tony Hansen and onald E. Eastlake 3rd. US Secure Hash Algorithms (SHA and SHA-based HMAC and
HKDF). FC 6234. May 2011. DOI: 10.17487/RFC6234. URL: https://www.rfc-editor.org/
info/rfc6234.

[86] Klaus Hartke. Observing Resources in the Constrained Application Protocol (CoAP). FC 7641. ept.
2015. DOI: 10.17487/RFC7641. URL: https://www.rfc-editor.org/info/rfc7641.

[87] Yi He, Zhenhua Zou, Kun un, Zhuotao iu, Ke Xu, Qian Wang, Chao hen, Zhi Wang, and Qi i.
“apidPatch: Firmware Hotpatching or eal-Time Embedded evices”. n: 31st USENIX Security
Symposium (USENIX Security 22). oston, MA: EX Association, Aug. 2022.

[88] Peter Hoddie and izzie Prader. IoT Development or ESP32 and ESP8266 with JavaScript: A Practical
Guide to XS and the Moddable SDK. pringer, 2020.

[89] Jeffrey Hoffstein, ick Howgrave-Graham, Jill Pipher, Joseph H ilverman, andWilliamWhyte.
“TG: igital signatures using the T lattice”. n: Cryptographers’ track at the RSA conerence.
pringer. 2003, pp. 122–140.

[90] Jonathan W Hui and avid Culler. “The dynamic behavior o a data dissemination protocol or
network programming at scale”. n: Proceedings o the 2nd international conerence on Embedded
networked sensor systems. 2004, pp. 81–94.

[91] “EEE tandard or ow-ate Wireless etworks”. n: IEEE Std 802.15.4-2020 (2020), pp. 1–800. DOI:
10.1109/IEEESTD.2020.9144691.

[92] ETF.Trusted Execution Environment Provisioning (TEE)WorkingGroup. URL:https://datatracker.
ietf.org/wg/teep/about/.

[93] ntel. TinyCrypt Cryptographic Library. May 2024. URL: https://github.com/intel/tinycryp
t.

[94] C-V nternational. RISC-V: The Open Standard RISC Instruction Set Architecture. 2024. URL:
https://riscv.org/.

[95] oT Analytics GmbH. State o IoT 2024: Number o connected IoT devices growing 13% to 18.8 billion
globally. ept. 3, 2024. URL: https://iot-analytics.com/number-connected-iot-
devices/.

[96] Yuval shai, Eyal Kushilevitz, aail strovsky, and Amit ahai. “Zero-knowledge rom secure
multiparty computation”. n: Proceedings o the thirty-ninth annual ACM symposium on Theory o
computing. 2007, pp. 21–30.

[97] T-T. “T-T ec. Y.2060 (06/2012) verview o the nternet o things”. n: (June 2012), pp. 1–22.
[98] Jaein Jeong and avid Culler. “ncremental network programming or wireless sensors”. n: 2004 First

Annual IEEE Communications Society Conerence on Sensor and Ad Hoc Communications and Networks,
2004. IEEE SECON 2004. EEE. 2004, pp. 25–33.

[99] iu Jian-band et al. “Youike service down in Taiwan”. n: Focus Taiwan (Aug. 2016). URL: http:
//focustaiwan.tw/news/asoc/201608310010.aspx.

[100] arjes Jomaa, Paolo Torrini, avid owak, Gilles Grimaud, and amuel Hym. “Proo-oriented design
o a separation kernel with minimal trusted computing base”. n: 18th International Workshop on
Automated Veriication o Critical Systems (AVOCS 2018). 2018.

[101] Matthias J. Kannwischer, Peter chwabe, ouglas tebila, and ThomWiggers. “mproving ofware
Quality in Cryptography tandardization Projects”. n: IEEE European Symposium on Security
and Privacy, EuroS&P 2022 - Workshops, Genoa, Italy, June 6-10, 2022. os Alamitos, CA, A:
EEE Computer ociety, 2022, pp. 19–30. DOI: 10.1109/EuroSPW55150.2022.00010. URL:
https://eprint.iacr.org/2022/337.

.0 PPENDIX : IBLIOGRAPHY 122

[102] Matthias J. Kannwischer, Peter chwabe, ouglas tebila, and ThomWiggers. PQClean/PQClean:
Clean, portable, tested implementations o post-quantum cryptography. 2024. URL: https://
github.com/PQClean/PQClean.

[103] Yoonseok Ko, Tamara ezk, and Manuel errano. “ecurejs compiler: Portable memory isolation
in javascript”. n: Proceedings o the 36th Annual ACM Symposium on Applied Computing. 2021,
pp. 1265–1274.

[104] Trishank Karthik Kuppusamy, ois Anne eong, and Justin Cappos. “ptane: ecurity and
customizability o sofware updates or vehicles”. n: IEEE vehicular technology magazine 13.1 (2018),
pp. 66–73.

[105] Alexandru avric, Adrian  Petrariu, and Valentin Popa. “igox communication protocol: The new era
o iot?” n: 2019 international conerence on sensing and instrumentation in IoT Era (ISSI). EEE. 2019,
pp. 1–4.

[106] Xavier eroy. “Formal veriication o a realistic compiler”. en. n: Communications o the ACM 52.7
(July 2009), pp. 107–115. ISSN: 0001-0782, 1557-7317. DOI: 10.1145/1538788.1538814. URL:
https://dl.acm.org/doi/10.1145/1538788.1538814 (visited on 12/16/2021).

[107] Philip evis and avid Culler. “Maté: A tiny virtual machine or sensor networks”. n: ACM Sigplan
Notices 10.605397.605407 (2002), pp. 85–95.

[108] Amit evy, radord Campbell, randen Ghena, aniel  Giffin, Pat Pannuto, Prabal utta, and
Philip evis. “Multiprogramming a 64kb computer saely and efficiently”. n: Proceedings o the 26th
Symposium on Operating Systems Principles. 2017, pp. 234–251.

[109] Amit evy, radord Campbell, randen Ghena, aniel . Giffin, Pat Pannuto, Prabal utta, and
Philip evis. “Multiprogramming a 64k Computer aely and Efficiently”. n: Proceedings o the 26th
Symposium on Operating Systems Principles. P ’17. Association or Computing Machinery, 2017,
pp. 234–251.

[110] inaro imited. Mbed TLS. 2024. URL: https://www.trustedfirmware.org/projects/
mbed-tls/.

[111] Patrick in. 10 Takeaways From Cal Poly’s Space Cyberattacks Report. June 25, 2024. URL: https:
//interactive.satellitetoday.com/via/july-2024/global-consolidation-
is-changing-dynamics-of-the-sector/.

[112] lora-alliance. TS001-1.0.4 LoRaWAN® L2 1.0.4 Speciication. June 2024. URL: https://resources.
lora-alliance.org/technical-specifications/ts001-1-0-4-lorawan-l2-1-0-
4-specification.

[113] Vadim yubashevsky, éo ucas, Eike Kiltz, Tancrède epoint, Peter chwabe, Gregor eiler,
amien tehlé, and hi ai. “Crystals-dilithium”. n: Algorithm Speciications and Supporting
Documentation (2020).

[114] avid Malan. “Crypto or tiny objects”. n: Harvard University, Cambridge, Massachusetts, USA, Tech.
Rep (2004).

[115] Peter Marwedel. Embedded System Design - Embedded Systems Foundations o Cyber-Physical Systems,
Second Edition. Embedded ystems. pringer, 2011. ISBN: 978-94-007-0256-1. DOI: 10.1007/978-
94-007-0257-8. URL: https://doi.org/10.1007/978-94-007-0257-8.

[116] teven McCanne and Van Jacobson. “The  Packet Filter: A ew Architecture or ser-level Packet
Capture.” n: USENIX winter. Vol. 46. 1993, pp. 259–270.

[117] obert J McEliece. “A public-key cryptosystem based on algebraic”. n: Coding Thv 4244 (1978),
pp. 114–116.

[118] avid McGrew, Michael Curcio, and cott Fluhrer. Leighton-Micali Hash-Based Signatures. FC 8554.
Apr. 2019. DOI: 10.17487/RFC8554. URL: https://www.rfc-editor.org/info/rfc8554.

[119] ud Merriam. “ofware pdate estroys $286 Million Japanese atellite”. n: Hackaday (May 2016).
[120] Ana Minaburo, aurent Toutain, Carles Gomez, ominique arthel, and Juan-Carlos Zúñiga. SCHC:

Generic Framework or Static Context Header Compression and Fragmentation. FC 8724. Apr. 2020.
DOI: 10.17487/RFC8724. URL: https://www.rfc-editor.org/info/rfc8724.

[121] Moddable Tech nc.Moddable. 2024. URL: https://moddable.com/.

.0 PPENDIX : IBLIOGRAPHY 123

[122] Gabriel Montenegro, Jonathan Hui, avid Culler, and andakishore Kushalnagar. Transmission o
IPv6 Packets over IEEE 802.15.4 Networks. FC 4944. ept. 2007. DOI: 10.17487/RFC4944. URL:
https://www.rfc-editor.org/info/rfc4944.

[123] oberto Morabito, Vittorio Cozzolino, Aaron Yi ing, icklas eijar, and Jorg tt. “Consolidate oT
edge computing with lightweight virtualization”. n: IEEE network 32.1 (2018), pp. 102–111.

[124] rendanMoranandHannes Tschoenig.ACBOR-based FirmwareManiest Serialisation Format. nternet-
raf draf-moran-suit-maniest-03. Work in Progress. nternet Engineering Task Force, ct. 2018.
42 pp. URL: https://datatracker.ietf.org/doc/draft-moran-suit-manifest/03/.

[125] rendan Moran, Hannes Tschoenig, and Henk irkholz. A Maniest Inormation Model or Firmware
Updates in Internet o Things (IoT) Devices. FC 9124. Jan. 2022. DOI: 10.17487/RFC9124. URL:
https://www.rfc-editor.org/info/rfc9124.

[126] rendanMoran, Hannes Tschoenig, avid rown, andMilosch Meriac. A Firmware Update Architecture
or Internet o Things. FC 9019. Apr. 2021. DOI: 10.17487/RFC9019. URL: https://www.rfc-
editor.org/info/rfc9019.

[127] Kirill ikitin, Elefherios Kokoris-Kogias, Philipp Jovanovic, icolas Gailly, inus Gasser, smail Khoffi,
Justin Cappos, and ryan Ford. “CHAAC: Proactive ofware-pdate Transparency via Collectively
igned kipchains and Veriied uilds”. n: 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017. Ed. by Engin Kirda and Thomas istenpart.
EX Association, 2017, pp. 1271–1287. URL: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/nikitin.

[128] Yoav ir and Adam angley. ChaCha20 and Poly1305 or IETF Protocols. FC 8439. June 2018. DOI:
10.17487/RFC8439. URL: https://www.rfc-editor.org/info/rfc8439.

[129] T. Hash unctions. 2023. URL: https://csrc.nist.gov/projects/hash-functions.
[130] Marek ovak and Petr kryja. “Efficient partial irmware update or oT devices with lua scripting

interace”. n: 2019 29th International Conerence Radioelektronika (RADIOELEKTRONIKA). EEE. 2019,
pp. 1–4.

[131] George ikonomou, imon uquennoy, Atis Elsts, Joakim Eriksson, Yasuyuki Tanaka, and icolas
Tsifes. “The Contiki-G open source operating system or next generation oT devices”. n: SofwareX
18 (2022), p. 101089.

[132] MA. “wM2M Technical peciication, Approved Version 1.0.2”. n: (Feb. 2018). URL: http:
//www.openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-
A/.

[133] MA pecWorks. “ightweight Machine to Machine Technical peciication: Core, Approved
Version 1.1”. n: (July 2018). URL: http://www.openmobilealliance.org/release/
LightweightM2M/V1_1-20180710-A/.

[134] MA pecWorks. “ightweight Machine to Machine Technical peciication: Transport indings,
Approved Version 1.1”. n: (July 2018). URL: http://www.openmobilealliance.org/releas
e/LightweightM2M/V1_1-20180710-A/.

[135] andro Pinto and uno antos. “emystiying Arm TrustZone: A Comprehensive urvey”. n: ACM
Comput. Surv. 51.6 (2019), 130:1–130:36. DOI: 10.1145/3291047. URL: https://doi.org/10.
1145/3291047.

[136] Amir Pnueli, Michael iegel, and Eli ingerman. “Translation validation”. n: Tools and Algorithms or
the Construction and Analysis o Systems: 4th International Conerence, TACAS’98 Held as Part o the
Joint European Conerences on Theory and Practice o Sofware, ETAPS’98 Lisbon, Portugal, March
28–April 4, 1998 Proceedings 4. pringer. 1998, pp. 151–166.

[137] iels eijers and Chi-heng hih. “CapeVM: A sae and ast virtual machine or resource-constrained
nternet-o-Things devices”. n: Proceedings o the 16th ACM Conerence on Embedded Networked
Sensor Systems. 2018, pp. 250–263.

[138] Vincent ijmen and Joan aemen. “Advanced encryption standard”. n: Proceedings o ederal
inormation processing standards publications, national institute o standards and technology 19
(2001), p. 22.

.0 PPENDIX : IBLIOGRAPHY 124

[139] odrigo oman, Cristina Alcaraz, and Javier opez. “A survey o cryptographic primitives and
implementations or hardware-constrained sensor network nodes”. n: Mobile Networks and
Applications 12 (2007), pp. 231–244.

[140] Peter uckebusch, Eli e Poorter, Carolina Fortuna, and ngrid Moerman. “Gitar: Generic extension or
internet-o-things architectures enabling dynamic updates o network and application modules”. n:
Ad Hoc Networks 36 (2016), pp. 127–151.

[141] pyridon amonas and avid Coss. “The CA strikes back: edeining conidentiality, integrity and
availability in security.” n: Journal o Inormation System Security 10.3 (2014).

[142] en assaman, Meredith . Patterson, ergey ratus, and Anna hubina. “The Halting Problems o
etwork tack nsecurity”. n: login Usenix Mag. 36.6 (2011). URL: https://www.usenix.org/
publications/login/december-2011-volume-36-number-6/halting-problems-
network-stack-insecurity.

[143] Jim chaad. CBOR Object Signing and Encryption (COSE). FC 8152. July 2017. DOI: 10.17487/
RFC8152. URL: https://www.rfc-editor.org/info/rfc8152.

[144] J chlienz and  addino. “arrowband internet o things whitepaper”. n:White Paper, Rohde &
Schwarz (2016), pp. 1–42.

[145] Göran elander, John Preuß Mattsson, Francesca Palombini, and udwig eitz. Object Security or
Constrained RESTul Environments (OSCORE). FC 8613. July 2019. DOI: 10.17487/RFC8613. URL:
https://www.rfc-editor.org/info/rfc8613.

[146] ik haylor, ouglas  imon, and William  ush. “A java virtual machine architecture or very small
devices”. n: ACM SIGPLAN Notices 38.7 (2003), pp. 34–41.

[147] Zach helby, Klaus Hartke, and Carsten ormann. The Constrained Application Protocol (CoAP).
FC 7252. June 2014. DOI: 10.17487/RFC7252. URL: https://www.rfc-editor.org/info/
rfc7252.

[148] Zhengguo heng, husen Yang, Yian Yu, Athanasios V Vasilakos, Julie A McCann, and Kin K eung. “A
survey on the iet protocol suite or the internet o things: tandards, challenges, and opportunities”.
n:Wireless Communications, IEEE 20.6 (2013), pp. 91–98.

[149] Kyung-Ah him. “A survey on post-quantum public-key signature schemes or secure vehicular
communications”. n: IEEE Transactions on Intelligent Transportation Systems 23.9 (2021), pp. 14025–
14042.

[150] Peter W. hor. “Polynomial-Time Algorithms or Prime Factorization and iscrete ogarithms on a
Quantum Computer”. n: SIAM Rev. 41.2 (1999), pp. 303–332. DOI: 10.1137/S0036144598347011.
URL: https://doi.org/10.1137/S0036144598347011.

[151] Volodymyr hymanskyy.WASM3: A high Perormance WebAssembly Interpreter Written in C. ct. 2020.
URL: https://github.com/wasm3/wasm3.

[152] igox. Sigox Device Radio Speciication. 2019. URL: https://build.sigfox.com/sigfox-
device-radio-specifications.

[153] Miguel ilva, avid Cerdeira, andro Pinto, and Tiago Gomes. “perating systems or nternet o
Things low-end devices: Analysis and benchmarking”. n: IEEE Internet o Things Journal 6.6 (2019),
pp. 10375–10383.

[154] aleh oltan, Prateek Mittal, and H Vincent Poor. “lackoT: oT otnet o high wattage devices can
disrupt the power grid”. n: Proc. USENIX Security. Vol. 18. 2018.

[155] ecure Hash tandard. “ecure hash standard”. n: FIPS PUB (1995), pp. 180–1.
[156] ational nstitute o tandards and Technology. “igital ignature tandard”. n: Federal Inormation

Processing Standards FIPS 186-4. T. July 2013.
[157] Peter Van der tok, Carsten ormann, and Anuj ehgal. PATCH and FETCH Methods or the Constrained

Application Protocol (CoAP). FC 8132. Apr. 2017. DOI: 10.17487/RFC8132. URL: https://www.
rfc-editor.org/info/rfc8132.

[158] Milosh tolikj, Pieter J Cuijpers, and Johan J ukkien. “Efficient reprogramming o wireless sensor
networks using incremental updates”. n: Pervasive Computing and Communications Workshops
(PERCOMWorkshops), 2013 IEEE International Conerence on. EEE. 2013, pp. 584–589.

.0 PPENDIX : IBLIOGRAPHY 125

[159] James A. torer and Thomas G. zymanski. “ata Compression via Textual ubstitution”. n: 29.4 (ct.
1982), pp. 928–951. DOI: 10.1145/322344.322346.

[160] The Apache ofware Foundation. Apache NuttX is a mature, real-time embedded operating system
(RTOS). 2024. URL: https://nuttx.apache.org/.

[161] The MCUboot Bootloader. URL: https://github.com/runtimeco/mcuboot.
[162] The Update Framework. URL: https://github.com/theupdateframework/tuf.
[163] Hannes Tschoenig and Thomas Fossati. Transport Layer Security (TLS) / Datagram Transport Layer

Security (DTLS) Proiles or the Internet o Things. FC 7925. July 2016. DOI: 10.17487/RFC7925.
URL: https://www.rfc-editor.org/info/rfc7925.

[164] Hannes Tschoenig, uss Housley, rendan Moran, avid rown, and Ken Takayama. Encrypted
Payloads in SUIT Maniests. nternet-raf draf-iet-suit-irmware-encryption-20. Work in Progress.
nternet Engineering Task Force, July 2024. 55 pp. URL: https://datatracker.ietf.org/
doc/draft-ietf-suit-firmware-encryption/20/.

[165] ami Vaarala. Duktape. 2024. URL: https://duktape.org/.
[166] Michel Veillette, Peter Van der tok, Alexander Pelov, Andy ierman, and Carsten ormann. CoAP

Management Interace (CORECONF). nternet-raf draf-iet-core-comi-17. Work in Progress. nternet
Engineering Task Force, Mar. 2024. 48 pp. URL: https://datatracker.ietf.org/doc/draft-
ietf-core-comi/17/.

[167] W3C. WASI: libc Implementation or WebAssembly. May 2024. URL: https://github.com/
WebAssembly/wasi-libc.

[168] Alexander Wachter. IPv6 over Controller Area Network. nternet-raf draf-wachter-6lo-can-01. Work
in Progress. nternet Engineering Task Force, Feb. 2020. 18 pp. URL: https://datatracker.
ietf.org/doc/draft-wachter-6lo-can/01/.

[169] Jos Wetzels. “nternet o Pwnable Things: Challenges in Embedded inary ecurity”. n: login Usenix
Mag. 42.2 (2017). URL: https://www.usenix.org/publications/login/summer2017/
wetzels.

[170] Gordon F Williams.Making Things Smart: Easy Embedded JavaScript Programming or Making
Everyday Objects into Intelligent Machines. Maker Media, nc., 2017.

[171] Martin Woolley. “luetooth core speciication v5. 1”. n: Bluetooth. 2019.
[172] Mehmet Erkan Yüksel. “Power consumption analysis o a Wi-Fi-based oT device”. n: Electrica 20.1

(2020), pp. 62–71.
[173] Zephyr Project. Zephyr Project – A proven RTOS ecosystem, by developers, or developers. 2024. URL:

https://www.zephyrproject.org/.
[174] Wei Zhou, Zhouqi Jiang, and e Guan. “nderstanding MP sage in Microcontroller-based ystems

in the Wild”. n: Proceedings 2023 Workshop on Binary Analysis Research. San Diego, CA, USA: Internet
Society. 2023.

[175] Xiaorui Zhu, Xianping Tao, Tao Gu, and Jian u. “eog: A systematic approach or supporting efficient
reprogramming in wireless sensor networks”. n: Journal o Parallel and Distributed Computing 102
(2017), pp. 132–148.

[176] Torsten Zimmermann, Jens Hiller, Helge eels, Pascal Hein, and Klaus Wehrle. “PT: mart
Protocol oading or the oT.” n: EWSN. 2018, pp. 49–54.

[177] Jean-Karim Zinzindohoué, Karthikeyan hargavan, Jonathan Protzenko, and enjamin eurdouche.
“HAC*: A veriied modern cryptographic library”. n: Proceedings o the 2017 ACM SIGSAC Conerence
on Computer and Communications Security. ACM. 2017, pp. 1789–1806.

APPENDIX B

LIST OF ACRONYMS

ACDS Attitude etermination and Control ystem

ANSI American ational tandards nstitute

AOT Ahead-o-Time

BPF erkeley Packet Filter

CAN Controller Area etwork

CBOR Concise inary bject epresentation

CertFC Certiied Femto-Container

CoAP Constrained Application Protocol

CORECONF CoAP Management nterace

COSE C bject igning and Encryption

DFU evice Firmware pgrade

ELF executable and linkable ormat

FaaS Functions-as-a-ervice

HMAC Hash-based Message Authentication Code

HSS Hierarchical ignature ystem

IETF nternet Engineering Task Force

IoT nternet o Things

JIT Just-in-Time

JOSE Javascript bject igning and Encryption

JSON Javacript bject otation

LEO ow-Earth rbit

LMS eighton-Micali ignature

LoC ines o Code

LPWAN ow Power WA

LwM2M ightweight Machine-to-Machine

MAC Message Authentication Code

